
Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Willkommen bei Verteilte Systeme!

Von Datenbanken
über Webdienste

bis zu p2p und Sensornetzen.

⌣̈

Heute: Koordinator, Synchronisierer, Fehlertoleranz, Konsens.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung von Vorlesung 4 I

Replikation
Single, Multi, Leaderless
Quorum Bedingung: r + w > n
kann zu Inkonsistenzen führen
Konsistenzmodelle definieren Garantien
Beispiel: Sticky Available

CRDTs und CALM
Koordination vermeiden oder zumindest einschränken.
benötigen für Performance Garbage Collection ⇒ Koordination
Genutzt in Riak, Redis, Dynamo

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung von Vorlesung 4 II

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Literatur

Distributed Systems - An Algorithmic Approach
– Sukumar Ghosh (2015).

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ablauf heute

Koordinator
Synchronisierung

--- PAUSE 14:15 ---

Fehlertoleranz
Konsens

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Koordinator

Verteilte, asynchrone Handlungen für ein gemeinsames Ziel

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Ziele für Koordination

Sie erkennen Algorithmen zur Wahl des Koordinators — leader
election

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Online-Versuch: Warum Koordination?

Schalten Sie bitte Ihre Mikrophone a
Bis 10 zählen
Es spricht immer nur Einer oder Eine
Wenn zwei sich unterbrechen, fangen wir neu an

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Präsenz-Versuch: Warum Koordination?

Schließen Sie bitte die Augen
Versuchen Sie, bis 10 zu zählen
Es spricht immer nur Einer oder Eine
Jede Person darf nur eine Zahl nennen
Wenn zwei sich unterbrechen, fangen wir neu an

Wie lange brauchen wir?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Wahl eines Koordinators

Vereinfacht viele Algorithmen
Koordinator steuert das System
Wenn ein Koordinator stirbt, wird ein neuer gewählt
Wenn sich zwei Netze verbinden, wählen die Knoten einen
gemeinsamen Koordinator

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Konzeptuell

Für die Algorithmen zur Wahl muss gelten:

Alle korrekt funktionierenden Knoten eines Netzes haben den
selben Koordinator.
Der Koordinator ist Teil des Netzes.
Der Koordinator funktioniert korrekt.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Bully-Algorithmus

Auswahl nach ID: laufender Prozess mit höchster ID wird
Koordinator
Annahmen:

Vollständig verbundenes Netz, alle erreichbar und bekannt
Fehlerfreie Kommunikation
Einziger Knoten-Defekt: Sterben
Es gibt einen Mechanismus zur Erkennung von Defekten
Es gibt eindeutig sortierte IDs.
Die IDs sind allen bekannt

Von Garcia-Molina (1982).

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Bully-Algorithmus: Ablauf

Nachrichten: election, reply, leader

1 election an alle mit höherer ID: „Kann ich Koordinator
sein?“

2 Warten auf reply.
1 Falls min. 1 reply: Warte auf leader.
2 Falls timeout oder keine höhere ID bekannt: leader-Nachricht

an alle.
3 Bei election Anfrage: Reply und weiter bei 1.
4 Falls kein leader nach reply (mit timeout): Neustart.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Connected Bully Algorithmus

N Prozesse {P0...PN−1}.
Wenn Pk bemerkt, dass der Koordinator nicht reagiert:

Sende WAHL Nachricht an alle Prozesse mit größerer ID
({Pk+1...PN−1}).
Wenn niemand antwortet, gewinnt Pk die Wahl und wird
Koordinator.
Wenn ein höherer Prozess antwortet, scheidet Pk aus der Wahl
aus.

Ist die Wahl beendet, werden alle Prozesse informiert.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Connected Bully - Beispiel 1

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Connected Bully - Beispiel 2

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Connected Bully - Beispiel 3

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Connected Bully - Beispiel 4

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Connected Bully - Beispiel 5

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Koordinator

Ring basierte Algorithmen

Prozesse sind in einem Ring angeordnet
Wahl starten: WAHL Nachricht an Nachfolger

Ausfallende Knoten werden übersprungen
Verschiedene Algorithmen für lokale Entscheidung, welche ID
gesendet wird
Erreicht einen Knoten die eigene ID, sendet dieser eine
COORDINATOR Nachricht um den Ring

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Maxima auf Ring-Topologie

Bully wählt höchste ID auf verbundenem Netz → alle können
alle erreichen.
Auf Ring:

unidirektional : Chang-Roberts
bidirektional : Franklin
unidirektional : Peterson - in O(N log (N))

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Maximum auf unidirektionalem Ring nach Chang-Roberts

Alle starten aktiv
schicken Token: Prozess-ID.
verschlucken Token mit niedrigerer ID.
Wenn sie ein höheres Token erhalten, sind sie nicht das
Maximum, leiten weiter.
Wenn sie ihr eigenes Token erhalten, sind sie das Maximum
und schicken ein leader token.

Worst case: O(N(N+1)/2) Nachrichten.

Was ist der Worst-Case?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Chang-Roberts: Worst Case

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Online-Versuch: Unidirektionaler Chat

Ich gebe den Bildschirm frei
Meine Matrix ist die Reihenfolge
Erzeugt euch eine zufällige ID auf
https://www.random.org/integers/?num=1&min=1&max=
100000&col=1&base=10&format=html&rnd=new
Schreibt im Chat an die nächste Person in der Reihe
Wir nutzen Chang-Roberts, um die Person mit der höchsten ID
zu finden

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

https://www.random.org/integers/?num=1&min=1&max=100000&col=1&base=10&format=html&rnd=new
https://www.random.org/integers/?num=1&min=1&max=100000&col=1&base=10&format=html&rnd=new

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Maximum auf Ring nach Franklin

Wie Chang-Roberts, aber in beide Richtungen.
In Runden1

Jede Runde wird mindestens die Hälfte der Prozesse inaktiv.

O(log(N)) Runden → Worst-Case: O(N log(N)) Nachrichten.

Was ist der Worst-Case?

1Eine Runde: Alle Knoten gehen einen Schritt weiter. Synchronisiert.
Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Maximum auf Ring nach Peterson

Schicke jede Runde mein Alias und das meines Vorgängers
Erhalte jede Runde das Alias meines Vorgängers und des
Vor-Vorgängers
Wenn das Alias meines Vorgängers größer ist als meins und als
das des Vor-Vorgängers, nimm das des Vorgängers an und
bleibe aktiv.
Ansonsten werde inaktiv (leite nur noch weiter)
Zwei Vergleiche pro Runde → wie Franklin!

Worst-Case: O(N log(N)) Nachrichten, Koordinator hat höchstes
Alias, aber nicht höchste Prozess-ID — wurde weitergeleitet!

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Maximum auf beliebiger Topologie

Fluten, aber sende nur die höchste erhaltene weiter
Anzahl Runden aus Netzwerk-Durchmesser (D) → muss
bekannt sein!

Anzahl der Nachrichten: O(∆ D)

Delta = maximale Zahl Nachbarn (max degree)./

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Koordinator-Wahl in anonymen Netzen

Braucht Symmetriebruch, z.B. Zufallszahlen
Beispiel:

Wirf eine Münze.
Bei Zahl benachrichtige alle aktiven Prozesse.
Bei Kopf werde passiv. Wenn du keine Nachricht erhältst, werde
wieder aktiv und wiederhole.
Wenn du aktiv bist und keine Benachrichtigungen erhältst, bist
du Koordinator.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Ohne volles Vertrauen an Alle

Komplexer
Commit-Reveal-Protokolle
Konkrete Möglichkeit: Mental Poker

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

https://en.wikipedia.org/wiki/Mental_poker

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Ring

Zusammenfassung Koordinator

Die Wahl eines Koordinators erleichtert den
Algorithmus-Entwurf.
Je nach Topologie unterschiedliche Algorithmen.
Petersons Algorithmus erreicht auf einem unidirektionalen Ring
die skalierung des Bidirektional, tauscht dafür allerdings IDs
aus.
Netze ohne IDs brauchen Symmetriebrüche.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Ziele für Synchronisierer

Sie kennen Methoden zur Synchronisierung

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Synchronisierer

Teilen die Berechnung in Diskrete Schritte (ticks).
Ermöglichen synchrone Algorithmen in asynchronen, verteilten
Systemen.
Nachrichten-Overhead oft durch günstigere Algorithmen
ausgeglichen.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Präsenz-Versuch: Zählen mit Koordination
Schließen Sie bitte die Augen
Koordinator-Wahl:

Ich nenne den Namen der startenden Person
Wer startet, nennt Namen Anderer früher im Alphabet
Wenn Sie ihren Namen hören, antworten Sie „hier“
Wenn niemand früher im Alphabet „hier“ sagt, sagen Sie
„Koordinator“

Zählen:
Als Koordinator rufen Sie Leute mit Namen auf, die hochzählen
Wir versuchen, bis 10 zu zählen
Jede Person darf nur eine Zahl nennen
Wenn zwei sich unterbrechen, ist die nächste Zahl wieder 1

Wie lange brauchen wir mit Koordinatorwahl?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Online-Versuch: Smiley-Teppich im Chat

Ziele:

wir schreiben im jitsi-chat erst alle :-), dann ;-), dann :-D
möglichst schnell
alle schreiben, bevor der nächste Smiley kommt
kein Überlappen

Zeit läuft ab . . .

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Aktionen pro Tick

Jeder Prozess kann:

Berechnungen ausführen
Nachrichten schicken

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Asynchronous bounded delay (ABD)-Synchronisierer

Braucht Uhren mit ausreichend niedrigem Drift
Maximalverzögerung von Nachrichten: δ

Ablauf:

Stelle C auf 0 + sende start(C=0) an Nachbarn
Starte C=1 erst bei 2 · δ.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Awerbuch (α) Synchronisierer

Funktioniert ohne Uhren und Maximalverzögerung.
Methode: Nachrichten → Acks → Safe.
Verschiedene Zeit- und Nachrichtenkomplexität

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

α-Synchronisierer

Sende Nachrichten <m, i> für Tick i
Sende <ack, i> für jede empfangene Nachricht und warte auf
<ack, i> für jede deiner Nachrichten
Sende <safe, i> für jeden Nachbar.
Warte auf <safe, i> von jedem Nachbar.
Starte Tick i+1

Nachrichtenkomplexität: M(α) = O(|E|).

Zeitkomplexität: T(α) = 3 → m, ack, safe.

|E|: Die Anzahl der Kanten (edges).

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Online-Versuch: Synchronisierte Smileys

Vollverbundenes Netz (unser Chat)
Ack: Gleichen Smiley eintragen. Alle Acks empfangen, wenn
alle Smileys gepostet sind.
Safe: Hand heben

Ablauf: :-) → ;-) → :-D

Trage den ersten oder den selben Smiley ein
Warte, bis alle anderen den selben Smiley eingetragen haben
Hebe die Hand
Wenn alle die Hand oben haben, senke sie wieder => nächster
Smiley

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Online-Versuch: Ist das genau α?

Ack für Nachricht — Smiley sehen?
Safe sehen — alle Smileys sehen?
Was ist „ich sehe alle Smileys“?

Brauchen wir hier einen vollen α-Synchronisierer?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Asynchrone Komplexität mit Synchronisierer

MA = MS + TS · M(A) (1)
TA = TS · T (α) (2)

Zusätzliche Nachrichten pro Zeitschritt.

Multiplikator der Zeit.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

β-Synchronisierer

Wähle Koordinator.
Spanning tree, Koordinator ist Wurzel.
Koordinator started Tick i mit <next, i> den Baum entlang.
Knoten senden <m, i> an Zielprozesse.
Knoten senden und empfangen <ack, i> für Nachrichten.
Knoten senden <safe, i> an Eltern.
Koordinator wartet auf <safe, i>, startet dann Tick i+1.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

β-Kosten

Nachrichtenkomplexität: M(β) = O(n) – statt |E| für α.

Zeitkomplexität: T(β) = Ω(log(n)), worst case: (n-1).

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

γ-Synchronisierer

Netz in Cluster aufteilen
Jeden Cluster hierarchisch via β-Synchronisierer
Zwischen Clustern α-Synchronisierer

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Synchronisierer

Zusammenfassung Synchronisierer
Synchronisierer ermöglichen die Nutzung der einfacheren synchronen
Algorithmen in asynchronen Systemen.

Zeit: TA = T (x) · TS (3)
T (α) = 3 ; message, ack, safe (4)
T (β) = O(height) ; path to root (5)

Nachrichten: MA = MS + TS · M(x) (6)
M(α) = O(|E |) (7)
M(β) = O(n) (8)

(9)

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung Koordination

Die Wahl eines Koordinators erleichtert den
Algorithmus-Entwurf.
Synchronisierer ermöglichen die Nutzung der einfacheren
synchronen Algorithmen in asynchronen Systemen.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Fehler-Tolerante Systeme

Fehler sind unvermeidbar. Problem: Häufigkeit von Fehlern.

Ziele:

Sie kennen verschiedene Klassen von Knoten-Defekten
Sie kennen Eigenschaften von Systemen zur Erkennung von
Knotenverlusten
Sie wissen um selbststabilisierende Algorithmen

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Fehler: Definition

Fehler Nicht-erwartetes Verhalten.
Fehlertoleranz Maskiert Fehler oder stellt das erwartete Verhalten

wieder her.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Arten von Fehlern

Crash Endet für immer
Auslassung Verliert Nachrichten (omission)
Vorübergehend Verändert den globalen Zustand zufällig

(transient)
Byzantinisch Jede vorstellbare Art fehlerhaften Verhaltens

Software Verschiedene Gründe (nächste Folie)
Zeitlich Deadline verpasst

Sicherheit Viren, Trojaner, Würmer, . . .
Heisenbugs Nicht verlässlich reproduzierbar

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Software-Fehler
Coding/menschlich 23. September 1999 rechnete die NASA die

Höhe über dem Mars in Fuß und Metern
Design Vertauschte Prioritäten im Mars pathfinder real-time

kernel — Kommunikation verhungerte.
Memleaks Verbraucht Resourcen

Spezifikationsfehler Fehler in Annahmen. Beispiel: Annahme: Ich
kann mein Objekt über JSON serialisieren. Realität:
JSON-keys sind immer Strings.

python
a = {1: 2}
json.loads(json.dumps(a))
{'1': 2}

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Beispiel-Fehler

define : faulty-system-1
define x #t
while-any

x : send 'correct
#t : send 'faulty

Scheduler: Schwach fair → Fehler wird garantiert sichtbar.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Fehlertolerante Systeme

Maskierend Sicherheit + Lebendigkeit → Flugzeugturbine (kann
weiterfliegen)

nicht-maskierend nur Lebendigkeit, Sicherheit zeitweise nicht →
GC pause

Fail-safe nur Sicherheit → Raketenstart abbrechen
Graceful degradation Noch akzeptabel → nächste Folie

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Beispiele für graceful degradation

Taxi: ?
Paketweiterleitung: ?
Kaffeeautomat: ?
Dateisystem: ?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Progressive improvement

Aktuell für Webseiten verwendet
Umgekehrte graceful degradation
Erst Basisdienst definieren und implementieren
Für bestimmte Plattformen bessere Qualität

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Fehlertoleranz (Minimal)

Crash Redundanz
Auslassung Bestätigungen → Sequenznummern (TCP!)

Andere Fail-safe + Crash

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung Fehler

Fehlerhäufigkeit minimieren
Fehlerarten: Crash, Auslassung, Vorübergehend, Byzantinisch,
Software, Zeitlich, Sicherheit, Heisenbugs
Toleranz: Maskierend, nicht-maskierend, Fail-safe, Graceful
degradation

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Erkennung von Knotenverlusten

Klassifizierung von Erkennungssystemen zur Analyse.

Vollständigkeit Welche Prozesse werden sicher gefunden?
Korrektheit Gibt es Falschmeldungen? Von wie vielen?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Starke Erkennung

Vollständigkeit Jeder verlorene Prozess wird von allen erkannt
Korrektheit Kein aktiver Prozess wird je verdächtigt

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Schwache Erkennung

Vollständigkeit Jeder verlorene Prozess wird von mindestens einem
erkannt und bleibt danach verdächtigt

Korrektheit Mindestens ein aktiver Prozess wird nie verdächtigt

Aus schwacher Vollständigkeit lässt sich starke Vollständigkeit
rekonstruieren.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Eventually correct

Schwächste Form: Irgendwann gibt es mindestens einen aktiven
Prozess, der nicht verdächtigt wird, fehlerbehaftet zu sein.

Aktiver Prozess heißt: Korrekt funktionierender Prozess.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Implementierung

Üblicherweise Timeouts
z.B. Heartbeat + Ack

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Wieso das ganze?

Klassifizierung der Erkennung, um Algorithmen beweisen zu können.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung Fehlererkennung

Vollständigkeit Wer weiß was?
Korrektheit Falschmeldungen?
Implementierung Timeouts

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

PAUSE

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Selbststabilisierung

Rückführung auf gültigen Zustand als Teil des Algorithmus.

Zeitweise Fehler: Stromschlag frisst Token
Topologie-Änderungen: „Churn“
Umgebungsänderungen: Morgens gültig, Abends nicht,
dazwischen?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Beispiel: Tokenwiederherstellung

Sie können durch Zählen ein fehlendes Token erkennen.
Können Sie Tokenfehler unproblematisch machen?

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Beispiel: Tokenwiederherstellung (Algorithmus)

define : ring i
cond

{i = 0}
while-any

{(ref s 0) = (ref s n-1)}
list-set! s 0 : +1modk (ref s 0)

else
while-any

: not {(ref s i) = (ref s {i - 1})}
list-set! s i : ref s {i - 1}

define N 10
define k 11 ; k > N!
define s : make-list N 0
define n-1 {N - 1}
define : +1modk x

modulo {x + 1} k
define ref list-ref

Dijkstra (1974)

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung Fehler

Wichtigste Fehlerarten: Crash, Auslassung, Byzantinisch.
Wichtigste Fehlertoleranz: Maskierend, nicht-maskierend.
Crash-Erkennung: Klassifiziert nach Vollständigkeit und
Korrektheit
Selbststabilisierung: Korrektur von Fehlern Teil des
Algorithmus

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Konsens

Eine gemeinsame Entscheidung treffen.

Ziele:

Sie verstehen die Herausforderungen der verteiltem
Konsensfindung
Sie können zwei Beispiele für verteilten Konsens nennen

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Bedingungen an einen Algorithmus

(Prozesse: P, nicht-schadhafte: P*):

Endet Alle P* müssen irgendwann entscheiden (termination)
Einigkeit Alle P* entscheiden gleich (agreement)

Gültigkeit Wenn alle P* mit dem gleichen Anfangswert v
beginnen, muss die Entscheidung v sein (validity)

Endgültigkeit Nachdem die Entscheidung getroffen ist, bleibt sie
für immer

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Konsens in asynchronen Systemen

Trivial in fehlerfreien Systemen:

Verteile alle Einzelentscheidungen
Wende gleiche Entscheidungsfunktion an

Mit Fehlern wird es spannend.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Garantierte Entscheidung mit Crash unmöglich

Asynchrones verteiltes System → Beliebige Verzögerungen.
Zustände mit Zünglein an der Wage (Entscheider).
Was, wenn das Zünglein zögert?

Es gibt immer einen Entscheider oder eine Entscheiderin, auch wenn
oft unbekannt.

In absolut asynchronen Systemen ist ein Crash nicht von
Verzögerung unterscheidbar.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Die Byzantinischen Generäle

Konsens in einem synchronen verteilten System mit byzantinischen
Fehlern.

Angriff oder Rückzug?
Es kann Verräter geben.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Lösung ohne Verräter

Entscheidungen verteilen
Identische Entscheidungsfunktion anwenden

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Anforderungen an einen Algorithmus mit Verrätern

Kommandant und Lieutnant:

1 Jeder loyale Lieutnant erhält den gleichen Befehl
2 Wenn der Kommandant loyal ist, erhält jeder loyale Lieutnant

den Befehl des Kommandanten

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Lösung mit Verrätern und Wortnachrichten

Nachrichten werden nicht korrumpiert
Nachichten können verloren gehen, aber ihr Fehlen kann
erkannt werden
Bei Erhalt ist die Identität des Senders bekannt

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Bei 3 Generälen gibt es keine Lösung mit mündlichen
Nachrichten

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Drei Fälle

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Verallgemeinerung

Für 3 Generäle von denen einer ein Verräter ist gibt es mit verbalen
Nachrichten keine Lösung.

Generäle können in gleichgroße Gruppen zusammengefasst werden,
mit den Verrätern zusammen in einer Gruppe.

⇒ Bei 3m Generälen und mindestens m Verrätern gibt es keine
Lösung.

⇒ N ≥ 3m + 1

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Eine Lösung mit Signaturen

Ziel der Verräter: Eine Entscheidung verhindern.
Lösung: Weiterleiten + Mehrheitswahl

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung Konsens

Byzantinische Generäle sind ein klassisches Beispiel.
Mündlichen Nachrichten: Weniger als 1/3tel Verräter.
Signaturen: Mindestens zwei loyale.

Störtoleranz über Fehlererkennung prüfbar.

Konkrete Umsetzung: Raft.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Zusammenfassung I

Koordinator vereinfacht Algorithmen
Synchronisierer ermöglichen synchrone Algorithmen in
asynchronen Systemen
Fehler: Crash, Auslassung, Byzantinisch
Toleranz: Maskierend?
Erkennung: Vollständigkeit, Korrektheit
Selbststabilisierung
Konsens: Byzantinische Generäle

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Einstieg Koordinator Synchronisierer Fehler Konsens Abschluss

Danke!

⌣̈

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

Literatur

Verweise I

Ghosh, S. (2015). Distributed Systems - An Algorithmic Approach.
Computer & Information Science. Chapman & Hall/CRC, 2
edition, ISBN: 978-1466552975.

Draketo
Verteilte Systeme 5: Koordination, Fehler, Konsens

https://openlibrary.org/search?isbn=978-1466552975

	Einstieg
	

	Koordinator
	Koordinator
	Ring

	Synchronisierer
	Synchronisierer
	

	Fehler
	
	
	

	Konsens
	
	
	

	Abschluss
	
	

	Anhang
	Literatur

