
Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Willkommen bei Verteilte Systeme!

Von Datenbanken
über Webdienste

bis zu p2p und Sensornetzen.

⌣̈

Heute: Algorithmen und Zustand.
Wer nichts garantiert, kann alles verteilen. Aber . . . ?
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Wiederholung Vorlesung 2 (Zeit)
Reale Uhren:

wall time vs. monotonic clocks
Skew und Drift
Synchronisieren: extern (Cristian, NTP), intern (Berkeley)

Logische Uhren:

Lamport: Ein Zähler pro Knoten. „Wenn es vorher war, dann ist
der Zeitstempel kleiner.“
Vektor: N Zähler in jedem der N Knoten. Kausalität. „Wenn
der Zeitstempel kleiner ist, dann war es vorher.“

sonst vielleicht gleichzeitig.

Ausschluss: Koordinator oder verteilt ⇒ Zusätzliche Nachrichten.
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Literatur

Distributed Systems - An Algorithmic Approach
– Sukumar Ghosh (2015).
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Ablauf heute

Warum?
Wie? Representation und Fairness
Richtigkeit 1: Sicherheit und Lebendigkeit

--- PAUSE ---

Beispiel: Prozess-Farben
Richtigkeit: Beweismethoden
Zustand
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Ziele heute I
Sie verstehen, wieso in verteilten Algorithmen nicht einfach alle
Möglichkeiten geprüft werden können.
Sie verstehen, warum Richtigkeit aus Sicherheit und
Lebendigkeit besteht.
Sie kennen Definition über nichtdeterministische guarded
commands.
Sie verstehen Beweise über Invarianten und Rückführung auf
bekannte Strukturen.
Sie können erklären, wie ein Schnappschuss des
Gesamtzustandes erstellt wird.
Sie können erlären, wie Dijkstra-Scholten den Abschluss
feststellt.
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Verteilte Ausführung: Abfolgen von Zuständen

AB*CDE*FL oder AB*GHI*FL oder AB*GJKI*FL?
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Alle möglichen Reihenfolgen prüfen?

N = (n ·m)!
(m!)n ; n Prozesse, m Aktionen1 (1)

Einfachster Fall:

1n = 2, m = 2 ⇒ N = 4!
(2!)2 = 24

4 = 6; n = 10, m = 4 ⇒ N > 1034
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Kriterien statt Zustände

Alle Zustände prüfen
Kriterien für alle Zustände beweisen
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Repräsentation

Darstellung von verteilten Algorithmen.

Ziele:

Sie verstehen choose-any und while-any.
Sie können erklären, wie Fairness den Programmablauf ändern
kann.
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Notation für Programme

define : <program>
choose-any

<guard1>
<statement1>

<guard2>
<statement2>

Kein Guard wahr: Abbruch
(Fehler).

define : <program>
define <variable> <value>
while-any

<guard1>
<statement1>

<guard2>
<statement2>

Kein Guard wahr: Nichts (Ende).
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Verkürzt

define : <program>
while-any

<guard1> : <statement1>
<guard2> : <statement2>

Angelehnt an Dijkstras Guarded Command Language.2

choose-any = if, while-any = do

Ausprobieren:
https: // hg. sr. ht/ ~arnebab/ guarded-commands

2Ich nutze entgegen Dijkstras Vorstellungen ausführbaren Code, weil mir in
Literatur zum Thema Fehler in dem entsprechenden Pseudocode aufgefallen sind.
Dijkstras Notation produktiv: Promela language ⇒ SPIN
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Strenge Notation
choose-any Äquivalent
if (...) {

...;
} else {

throw new RuntimeException("undefined branch");
}

Standard if
define : if-else-ignore

choose-any
<guard1> : <statement1>
<guard2> : <statement2>
#t : skip
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Beispiele

Nicht-Deterministisch
define : through-to-4

define x 0
while-any

{x < 4}
set! x {x + 1}
display x

{x = 3}
set! x 0
display x

newline
1234 | 12301234 | . . . to copy

Atomic
define : atomic-switch

define a #t
define flag #f
while-any

a
set! flag #t
set! flag #f

: and flag a
set! a #f

Endlosschleife to copy
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Anwendung

define : euclidean a b
while-any

{a < b} : set! b {b - a}
{b < a} : set! a {a - b}

values a b

to copy

Größter gemeinsamer Teiler:

euclidean 999999 15678 .
;; => 117
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Fairness

Scheduler: Arten von Fairness

unbedingt fair Jeder Pfad wird irgendwann getestet3

stark fair Alle Pfade werden irgendwann getestet, deren Guard
unbegrenzt oft wahr wird

schwach fair Alle Pfade werden irgendwann getestet, deren Guard
wahr bleibt4

3Das ist der Normalfall, den wir ab jetzt ignorieren werden.
4Er wird nur auf zwei Arten wieder falsch, wenn er wahr war: sein Statement

wird ausgeführt oder der Prozess terminiert.
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Fairness

Scheduler: Garantierte Fairness

stark und schwach: geringere Garantien als bei sequenziellem
Code
⇒ Mehr Freiheit für Netz-Implementierung
⇒ „günstigere“ Systeme
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Fairness

Fairness Beispiel

define : fair
define b #t
define x #f
while-any

b : set! x #t
b : set! x #f
x : set! b #f
x : set! x : not x

to copy

Verhalten bei Fairness?
stark
schwach
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Fairness

Zusammenfassung

Guarded actions
Nicht deterministisch
Fairness:

stark: Guard wird getestet wenn er beliebig oft wahr wird
schwach: Guard wird getestet, wenn er wahr bleibt
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Richtigkeit

Garantien für verteilte Systeme.

In theoretischer Meteorologie werden die Grenzen und
Ungenauigkeiten von Wettermodellen bewiesen, lange bevor sie
implementiert werden.
Um Versprechen von traditionellen p2p-Systemen für Systeme mit
höheren Anforderungen an Verlässlichkeit zu realisieren, müssen wir
beweisen, welche Garantien wir trotz reduzierter Koordination geben
können.
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Ziele für Richtigkeit

Sie verstehen, warum in verteilten Systemen einfaches Testen
schwerer ist
Sie können die Kriterien Sicherheit (safety) und Lebendigkeit
(liveness) beschreiben
Sie erkennen den Einfluss von Fairness und Granularität.
Sie verstehen Beweise über Invarianten.
Sie verstehen Rückführung auf bekannte Strukturen.
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Alle möglichen Reihenfolgen prüfen?

N = (n ·m)!
(m!)n ; n Prozesse, m Aktionen5 (2)

5n = 2, m = 2 ⇒ N = 4!
(2!)2 = 24

4 = 6; n = 10, m = 4 ⇒ N > 1034
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Kriterien

Alle Zustände prüfen
Kriterien für alle Zustände beweisen

Kriterien:

Sicherheit (Safety)
Lebendigkeit (Liveness)
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Sicherheit (Safety)

Es passiert nie etwas Schlechtes.

Die Temperatur steigt nie über 100°C
Sendet nie in einen vollen Kanal
Liest nie, während geschrieben wird
Kein Verklemmen (Deadlock): Prüft guards
Teilweise Richtigkeit (Partial correctness): Wenn das Programm
endet, ist die Antwort richtig
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Lebendigkeit (Liveness)

Irgendwann passiert etwas Gewünschtes.

Fortschritt: Kein Verhungern / livelock → recursion step
Fairness: Kommt eine Aktion irgendwann dran?
Beendigung (termination): Das Programm wird enden

Richtigkeit = Teilweise Richtigkeit + Beendigung
(total correctness = partial correctness + termination)
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Beispiel: Nachbarn mit unterschiedlichen Farben

to copy

define : colorme
define P0 0
define P1 0
define P2 2
define P3 2
while-any

: or {P0 = P1} {P0 = P2} {P0 = P3}
set! P0 : modulo {P0 + 2} 4

{P1 = P0}
set! P1 : modulo {P1 + 2} 4

{P2 = P0}
set! P2 : modulo {P2 + 2} 4

{P3 = P0}
set! P3 : modulo {P3 + 2} 4

values P0 P1 P2 P3Draketo
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Beispiel korrekt?

Teilweise Richtigkeit
Wenn alle Guards falsch sind, ist
die Anforderung immer erfüllt. ✓
Guards:

P0 = P1
P0 = P2
P0 = P3

Beendigung
Bei Anfangszustand
P0 = P1 = 0, P2 = P3 = 2 sind
Endloschleifen möglich. E

E
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Endlosschleife der Prozessfarben

Fairnessgarantien?

stark
schwach
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Einfluss der Granularität

define : atomic-switch
define a #t
define flag #f
while-any

a
set! flag #t
set! flag #f

: and flag a
set! a #f

to copy

define : nonatomic-switch
define a #t
define flag #f
while-any

a : set! flag #t
a : set! flag #f
: and flag a

set! a #f
to copy
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Grenze: Reagierende System (open dynamic systems)

Programme, die nicht enden sollen
Reagieren auf die Umgebung

⇒ Nur Programm-Teile mit diesen Methoden beweisbar
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Beweismethoden

Asserting safety
Liveness auf bekannte Fragen zurückführen
Praxisverweise (Programmgestützte Beweise)
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Asserting safety: Induktion mit Invarianten

Sicherheitsgarantie P
Invariante I
Initialzustand
Prüfe alle möglichen Übergänge
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Beispiel: Kommunizierende Prozesse

Endbedingung?

define c1 : channel 0
define c2 : channel 0

;; (empty? c1) : there is no message in the channel

;; programs for the processes

define : T
define t 5
while-any

{t > 0} ;; Aktion 1
send-message-to c1
set! t {t - 1}

: not (empty? c2) ;; Aktion 2
receive-message-from c2
set! t {t + 1}

define : R
define r 5
while-any

{r > 0} ;; Aktion 3
send-message-to c2
set! r {r - 1}

: not (empty? c1) ;; A. 4
receive-message-from c1
set! r {r + 1}
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Beweis durch Induktion

Sicherheit P: Gesamtzahl Nachrichten in Kanälen ist N ≤ 10.
Invariante I ≡ (t ≥ 0) ∧ (r ≥ 0) ∧ (c1 + t + c2 + r = 10)
Basis: c1 = 0, c2=0, t=5, r=5 → N ≤ 10
Schritt: I bleibt bei jeder möglichen Aktion erhalten

Aktion 1: Unverändert: (t+c1), c2, r. Da Guard {t > 0}: t ≥ 0 ✓

Aktion 2: Unverändert: (t+c2), c1, r. Da t nur steigt: t ≥ 0 ✓

Aktion 3: Unverändert: (r+c2), c1, t. Da Guard {r > 0}: r ≥ 0 ✓

Aktion 4: Unverändert: (r+c1), c2, t. Da r nur steigt: r ≥ 0 ✓
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Liveness mit well-founded sets

Auf Bekanntes zurückführen (das WF)
→ Eindeutige Abbildung f: S → WF.
Dabei muss gelten:

Es gibt keine unendliche Folge mit w1≫ w2≫ ... im WF.
Beim Übergang s1 → s2 mit w1 = f (s1), w2 = f (s2) ist
w1≫ w2.

f: Maßfunktion (measure function)6

≫: Totalordnung (z.B. > bei Ganzzahlen).

6Maßfunktion: gibt ein Element des WF zurück, z.B. eine Zahl.
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Beispiel: Auf positive Ganzzahlen zurückführen

Es gibt keine unendliche Folge von positiven Ganzzahlen mit
w1 > w2 > ....
Übergang s1 → s2 mit f (s1) = n, f (s2) = n − 1 → Terminiert.
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Beispiel: Phasen von Uhren synchronisieren

Uhren mit (x + 1)mod3. Fester Takt, aber Fehler möglich.

define N 20
define phases : make-list N 0
define : sync i

choose-any
: member (i+1%3 i) (neighbors i)

i+2%3 i
: not : member (i+1%3 i) (neighbors i)

i+1%3 i

Hilfsfunktionen auf Folie 74.
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Synchron

00000000000000000000
11111111111111111111
22222222222222222222
00000000000000000000

Algorithm:
choose-any
: member (i+1%3 i) (neighbors i)

i+2%3 i
: not : member (i+1%3 i) (neighbors i)

i+1%3 i

Hilfsfunktionen:
define : show-all

for-each display phases
newline

define : sync-all x
set! phases : map sync : iota N
show-all

set! phases : make-list N 0
show-all
for-each sync-all : iota 3
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Gestört 1

00020000000000000000
11111111111111111111
22222222222222222222
00000000000000000000

Algorithm:
choose-any
: member (i+1%3 i) (neighbors i)

i+2%3 i
: not : member (i+1%3 i) (neighbors i)

i+1%3 i

Hilfsfunktionen:
set! phases : make-list N 0
list-set! phases 3 2

show-all
for-each sync-all : iota 3
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Gestört 2

00010000000000000000
11222111111111111111
20000022222222222222
11111110000000000000
22222222111111111111
00000000022222222222
11111111110000000000
22222222222111111111
00000000000022222222
11111111111110000000
22222222222222111111

set! phases : make-list N 0
list-set! phases 3 1
show-all
for-each sync-all : iota 10
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Zufällig

12000210011100002111
01111102222221111022
22222221000000222210
00000000211111100002
11111111102222221111
22222222221000000222
00000000000211111100
11111111111102222221
22222222222221000000
00000000000000211111

define : random-phase i
inexact->exact

floor {3 * (random:uniform)}

set! phases : make-list N 0
set! phases : map random-phase : iota N

show-all
for-each sync-all : iota 10
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Beweisidee

Idee (ohne Beschränkung der Allgemeinheit):

1 ← 2
2 → 1

Beobachtungen:

→ ci - ⇒ Pfeil verschiebt sich zu ci+1. Kein → für c0

- ci ← ⇒ Pfeil verschiebt sich zu ci−1. Kein ← für cn−1

→ ci ← ⇒ Beide Pfeile verschwinden.
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Beweis
Kostenfunktion: D = d[0] + d[1] + . . . + d[n-1]
mit

d [i ] = 0 ; - c - (3)
= i + 1 ; - c ← (4)
= n − i ; → c - (5)
= 1 ; → c ← (6)

Jeder Veränderung der Pfeile reduziert die Kosten um 1.
Die Zahl positiven Ganzzahlen kleiner D0 ist endlich. QED.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand



Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Weiterführend

In der Praxis: Beweisprogramme wie Coq:
https://de.wikipedia.org/wiki/Coq_(Software)

POPL Distinguished: Higher-Order Leak and Deadlock Free
Locks — bewiesenes Typsystem für Lockfreie Paralellität:
https://www.youtube.com/playlist?list=
PLyrlk8Xaylp4ecKH5damlZ2FrhbauW9Fm

Tiefer einsteigen: The Little Prover (Friedman und Eastlund, 2015).
Aktuell: Konsistenz ohne Koordination (Hellerstein und Alvaro,
2019) → blog.
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Zusammenfassung

Alle Reihenfolgen nicht testbar: 10 Prozesse, 4 Aktionen →
1034 Möglichkeiten ⇒ Kriterien für alle Zustände beweisen.
Kriterien:

Safety: Teilweise Richtigkeit → Invariante für alle Übergänge
Liveness: Beendigung (terminiert) → Rückführung auf
Bekanntes

Einfluss von Fairness und Granularität
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Globalen Zustand

Konsistenten Zustand zusammenfügen.

Ziele:

Sie verstehen, welche Schwierigkeiten auftreten.
Sie können einen konsistenten Schnitt von einem nicht
konsistenten unterscheiden.
Sie kennen Methoden, um verschiedene Arten von globalen
Zuständen zu sammeln.
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Beispiel: Token zählen

Es gibt 1 Token.
Wie viele Token gezählt?
(Möglichkeiten sammeln)

Möglichkeiten
1 P0 (hat das Token) → n0 = 1.

P1 (Token in (1,2)) → n1 = 0.
P2 (Token in (2,0)) → n2 = 0.
⇒ n0 + n1 + n2 = 1. ✓

2 P0 (hat das Token) → n0 = 1.
P1 (hat das Token) → n1 = 1.
P2 (hat das Token) → n2 = 1.
⇒ n0 + n1 + n2 = 3. E

3 P0 (Token in (0,1)) → n0 = 0.
P1 (Token in (1,2)) → n1 = 0.
P2 (Token in (2,0)) → n2 = 0.
⇒ n0 + n1 + n2 = 0. E

Draketo
Verteilte Systeme 3: Algorithmen und Zustand



Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Beispiel: Token zählen

Es gibt 1 Token.
Wie viele Token gezählt?
(Möglichkeiten sammeln)

Möglichkeiten
1 P0 (hat das Token) → n0 = 1.

P1 (Token in (1,2)) → n1 = 0.
P2 (Token in (2,0)) → n2 = 0.
⇒ n0 + n1 + n2 = 1. ✓

2 P0 (hat das Token) → n0 = 1.
P1 (hat das Token) → n1 = 1.
P2 (hat das Token) → n2 = 1.
⇒ n0 + n1 + n2 = 3. E

3 P0 (Token in (0,1)) → n0 = 0.
P1 (Token in (1,2)) → n1 = 0.
P2 (Token in (2,0)) → n2 = 0.
⇒ n0 + n1 + n2 = 0. E
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Globale Zustände

Snapshot erstellen
Informationen verbreiten (z.B. um Topologie zu erkunden)
Abschluss feststellen
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Snapshot

Ein in sich konsistenter Zustand.

Ein konsistenter Snapshot ermöglicht z.B. einen roll-back.
Alle Knoten anzuhalten ist üblicherweise zu teuer.
Nachträglich empfangene Nachrichten müssen gespeichert
werden.

Beispiel: Token zählen.
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Bedingung für Snapshot: Konsistente Schnitte

Konsistent: Enthält alle logischen Vorgänger.

Inkonsistent: Nach roll-back würde g N* von h* erneut erhalten.
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Chandy-Lamport Algorithmus

Initiator wird rot, speichert eigenen Zustand, sended Marker an
alle Ausgänge.
Erhalt des Markers: wird rot, speichert eigenen Zustand,
sended Marker an alle Ausgänge.
Alle roten speichern empfangene weiße Nachrichten.
Ende: Alle sind rot, jeder hat über jeden Eingang einen Marker
erhalten und über jeden Ausgang einen verschickt.
Danach: Daten einsammeln.
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Chandy-Lamport, Beispiel
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Chandy-Lamport, Beweisidee

Kein weißer Prozess erhält je eine rote Nachricht.
Braucht FIFO-Kanäle! (z.B. TCP)
Rote Zustände, die zeitlich vor weißen liegen, können
vertauscht werden.
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Beispiel: Token richtig zählen
P0 hat Token geschickt, wird rot, speichert:
n0 = 0, sent0 = 1, received0 = 0, sendet Marker.
P1 leitet Token weiter, erhält Marker, wird rot,
speichert: n1 = 0, sent1 = 1, received1 = 1,
sendet Marker.
P2 leitet Token weiter, erhält Marker, wird rot,
speichert: n2 = 0, sent1 = 1, received1 = 1,
sendet Marker.
P0 erhält Token, erhält dann den Marker.
Algorithmus abgeschlossen.

(n0+n1+n2)+(sent0−received0)+(sent1−received1)+(sent2−received2) = 1
(7)
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Abschluss feststellen: Dijkstra-Scholten

Initiator sendet Signal an alle Verbundenen.
Empfänger sendet Signal an alle Folgenden, sendet Ack, wenn

Berechnung terminiert, und
alle Folgenden Ack geschickt haben

Wenn Initiator so viele Acks wie Signale erhalten hat, ist die
Berechnung terminiert.
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Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Zusammenfassung

Token zählen ist nicht-trivial
Konsistente Schnitte müssen alle logisch früheren Daten
enthalten
Chandy-Lamport sendet Farbmarker
Broadcast
Abschluss feststellen: Dijkstra-Scholten
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Auf dass Sie furchtlos Garantien geben können!

⌣̈
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Werkzeuge Literatur

Notation für Daten

define-record-type <message>
message a b c ;; Konstruktor
. message? ;; Test
a message-a ;; Getter
b message-b
c message-c
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copy-paste Programme

Kopierbare Versionen der Programmschnipsel.
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Werkzeuge Literatur

Through-to-4

define : through-to-4
___ define x 0
___ while-any
_______ {x < 4}
___________ set! x {x + 1}
___________ display x
_______ {x = 3}
___________ set! x 0
___________ display x
___ newline

Folie

Draketo
Verteilte Systeme 3: Algorithmen und Zustand
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atomic

define : atomic-switch
___ define a #t
___ define flag #f
___ while-any
_______ a
___________ set! flag #t
___________ set! flag #f
_______ : and flag a
___________ set! a #f

Folie
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Euclidean

define : euclidean a b
___ while-any
________ {a < b} : set! b {b - a}
________ {b < a} : set! a {a - b}
___ values a b

Folie
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Werkzeuge Literatur

Fairness

define : fair
_ define b #t
_ define x #f
_ while-any
_____ b : set! x #t
_____ b : set! x #f
_____ x : set! b #f
_____ x : set! x : not x

Folie
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colorme
define : colorme
___ define P0 0
___ define P1 0
___ define P2 2
___ define P3 2
___ while-any
_______ : or {P0 = P1} {P0 = P2} {P0 = P3}
_________ set! P0 : modulo {P0 + 2} 4
_______ {P1 = P0}
_________ set! P1 : modulo {P1 + 2} 4
_______ {P2 = P0}
_________ set! P2 : modulo {P2 + 2} 4
_______ {P3 = P0}
_________ set! P3 : modulo {P3 + 2} 4
___ values P0 P1 P2 P3

Folie
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Werkzeuge Literatur

atomic switch

define : atomic-switch
___ define a #t
___ define flag #f
___ while-any
_______ a
___________ set! flag #t
___________ set! flag #f
_______ : and flag a
___________ set! a #f

Folie
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non-atomic switch

define : nonatomic-switch
___ define a #t
___ define flag #f
___ while-any
_______ a : set! flag #t
_______ a : set! flag #f
_______ : and flag a
_____________ set! a #f

Folie
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Werkzeuge Literatur

while-any/deterministic

define-syntax-rule : while-any guarded ...
while #t
cond guarded ...
else
break
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Werkzeuge Literatur

choose-any/correct basics
import : ice-9 pretty-print

srfi :1 lists
srfi srfi-9
only (srfi :26) cut
prefix (fibers channels) fibers:
prefix (fibers) fibers:

;; fibers 1.0 and 1.1 compat
false-if-exception

import : fibers internal
false-if-exception

import : fibers scheduler

random-state-from-platform
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choose-any/correct (delayed evaluation)

define-syntax wrap-all-in-lambda
lambda : x
syntax-case x (SEPARATOR)
: _ (done ...) SEPARATOR
#` begin (list done ...)

: _ (done ...) SEPARATOR (guard action ...) guarded ...
#` wrap-all-in-lambda
. (done ... (cons (lambda() guard) (lambda() action ...)))
. SEPARATOR guarded ...

: _ (guard action ...) guarded ...
#` wrap-all-in-lambda
. ((cons (lambda () guard) (lambda() action ...)))
. SEPARATOR guarded ...

: _
. '()
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choose-any/correct I

define : shuffle items
sort items : λ (x y) {(random:uniform) < 0.5}

define : choose-any/internal guards
let loop : : guards : shuffle guards

when : not : null? guards
let : : guard : car guards

if ((car guard)) ;; gets and calls the lambda
: cdr guard ;; gets and calls the lambda
loop : cdr guards
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Werkzeuge Literatur

choose-any/correct II

define-syntax-rule : choose-any guarded ...
choose-any/internal

wrap-all-in-lambda guarded ...
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while-any/correct
define : while-any/internal guards

while #t
let loop : : guards : shuffle guards

when : null? guards
break

let : : guard : car guards
if : (car guard) ;; gets and calls the lambda

: cdr guard ;; gets and calls the lambda
loop : cdr guards

define-syntax-rule : while-any guarded ...
while-any/internal

wrap-all-in-lambda guarded ...
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Werkzeuge Literatur

channel tools I

define-record-type <channel>
channel message-count
. channel?
message-count

. channel-message-count

. channel-message-count-set!

Draketo
Verteilte Systeme 3: Algorithmen und Zustand



Werkzeuge Literatur

channel tools II

define : send-message-to chan
channel-message-count-set! chan

+ 1 : channel-message-count chan

define : receive-message-from chan
channel-message-count-set! chan

+ -1 : channel-message-count chan

define : empty? chan
equal? 0 : channel-message-count chan
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Phase helpers

define (phase i) : list-ref phases i
define (i+1%3 i) : modulo {(phase i) + 1} 3
define (i+2%3 i) : modulo {(phase i) + 2} 3
define : neighbors i

take : drop phases (max 0 {i - 1})
min 3 {N - {i - 1}} {i + 2}

define : random-phase i
inexact->exact : floor : * 3 : random:uniform .
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Zustandsbroadcast Implementierung

Zustands-Broadcast all-to-all I
define : broadcast init out in

define V init
define W '()
define inqueue '()
pretty-print V
while-any

: not : equal? V W ;; Schritt 1
send-to-all out : lset-difference equal? V W
set! W V
pretty-print W

: check-in-has-input!? inqueue in ;; Schritt 2
set! V : apply lset-union equal? V inqueue
set! inqueue '()
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Zustandsbroadcast Implementierung

Zustands-Broadcast all-to-all II
pretty-print V

pretty-print V
. V

define : send-to-all channels value
for-each : cut fibers:put-message <> value

. channels
define : receive-from-all channels

map fibers:get-message channels
define-syntax-rule : check-in-has-input!? inqueue in

begin
set! inqueue : receive-from-all in
: λ _ : not : every empty? inqueue

define : make-buffered-channel
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Zustandsbroadcast Implementierung

Zustands-Broadcast all-to-all III
define chan-in : fibers:make-channel
define chan-out : fibers:make-channel
fibers:

define N 3
define init-values : map list : iota N
;; connect every channel to every other channel
define out-channels

map (λ _ '()) : iota N
define in-channels

map (λ _ '()) : iota N
let loop : (N N)

when : not : zero? N
for-each
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Zustandsbroadcast Implementierung

Zustands-Broadcast all-to-all IV
λ (n)

let-values : ((chan-in chan-out) (fibers:make-channel))
list-set! out-channels {N - 1}

cons chan : list-ref out-channels {N - 1}
list-set! in-channels n

cons chan : list-ref in-channels n
let : (chan (fibers:make-channel))

list-set! in-channels {N - 1}
cons chan : list-ref in-channels {N - 1}

list-set! out-channels n
cons chan : list-ref out-channels n

iota {N - 1}
loop {N - 1}
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Zustandsbroadcast Implementierung

Zustands-Broadcast all-to-all V

fibers:run-fibers
λ _

map
λ (init out in)

fibers:spawn-fiber
λ _

broadcast init out in
. init-values out-channels in-channels

. #:drain? #t

Auf strongly connected graph: Jeder Knoten in Richtung der Kanten
(„in Pfeilrichtung“) erreichbar.
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Zustandsbroadcast Implementierung

Zustands-Broadcast terminiert

Wertungsfunktion:

Y = (V0, V1, ..., Vn−1, c0, c1, ..., cm−1) (8)

c Kanalinhalt
V Zustand

In Schritt 1 wächst c.
In Schritt 2 wächst V.
Terminiert, weiß aber nicht, wann.
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Werkzeuge Literatur

Logikprogrammierung

Automatisierte Beweise durch Rückführung auf bewiesene Axiome.

Trivial
{P} skip {P}

Variablenersetzung
{Q[x ← E]} x:= E {Q}

Minimalableitung:
{?} x:=1 {x=1} ;
? = (1 = 1) = true
{true} x:= 1 {x = 1}

Ebenso:
{?} x:= 100 {x=0}
? = (100 = 0) = false
{false} x:= 1 {x = 1}

Kein Beweis der Terminierung ⇒ Safety, nicht Liveness.
Äquivalent zu „Wenn alle Guards false sind, ist der Zustand richtig“.
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Prädikatumformung (predicate transformers)

wp(S, false) = false (9)

S: Programm
wp(S, Zielzustand) = Bedingung
Kein Programm kann false erfüllen

wp(while-any, Q) = ∃k ≥ 0 : Hk(Q) (10)

k: Schritte
Hk(Q): Alle Zustände, die nach k Schritten terminieren.
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Beispiel für Prädikatumformung

define : toss
define x 'egal
choose-any

#t : set! x 0
#t : set! x 1

wp(toss, x = 0) = false (11)
wp(toss, x = 1) = false (12)

wp(toss, x = 0 ∨ x = 1) = true (13)
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