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Willkommen bei Verteilte Systeme!

Von Datenbanken
tiber Webdienste
bis zu p2p und Sensornetzen.

Heute: Algorithmen und Zustand.
Wer nichts garantiert, kann alles verteilen. Aber ... ?
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Wiederholung Vorlesung 2 (Zeit)
Reale Uhren:

m wall time vs. monotonic clocks
m Skew und Drift
m Synchronisieren: extern (Cristian, NTP), intern (Berkeley)

Logische Uhren:

m Lamport: Ein Zahler pro Knoten. ,Wenn es vorher war, dann ist
der Zeitstempel kleiner.”
m Vektor: N Zahler in jedem der N Knoten. Kausalitat. ,Wenn
der Zeitstempel kleiner ist, dann war es vorher.”
m sonst vielleicht gleichzeitig.

Ausschluss: Koordinator oder verteilt = Zusatzliche Nachrichten.
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Literatur

Distributed Systems - An Algorithmic Approach
— Sukumar Ghosh (2015).
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Ablauf heute

m Warum?
m Wie? Representation und Fairness
m Richtigkeit 1: Sicherheit und Lebendigkeit

--- PAUSE ---

m Beispiel: Prozess-Farben
m Richtigkeit: Beweismethoden

m Zustand
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Ziele heute |

Sie verstehen, wieso in verteilten Algorithmen nicht einfach alle
Méglichkeiten gepriift werden kdnnen.

m Sie verstehen, warum Richtigkeit aus Sicherheit und
Lebendigkeit besteht.

m Sie kennen Definition (iber nichtdeterministische guarded
commands.

m Sie verstehen Beweise iiber Invarianten und Riickfiihrung auf
bekannte Strukturen.

m Sie kénnen erkldren, wie ein Schnappschuss des
Gesamtzustandes erstellt wird.

m Sie kdnnen erldren, wie Dijkstra-Scholten den Abschluss
feststellt.
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Verteilte Ausfiihrung: Abfolgen von Zustanden

AB*CDE*FL oder AB*GHI*FL oder AB*GJKI*FL?
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Alle moglichen Reihenfolgen priifen?
(n-m)! : 1
N = ~——=; n Prozesse, m Aktionen (1)
(mt)?
Einfachster Fall:
Reihenfolge DEHI Reihenfolge DHIE Reihenfolge HIDE
13 & 1/ : :
S, S, S, i i
7,—.—.—( : X > - H 1 7'—< : X : >—'—*: :
Reihenfolge DHEI Reihenfolge HDEI Reihenfolge HDIE
3 [® [® : :
D
5 5 5 A
'n=2m=2=N=g5=2=6n=10,m=4= N> 10*
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Kriterien statt Zustande

o Alle Zustinde ot

m Kriterien fir alle Zustande beweisen
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Reprasentation

Darstellung von verteilten Algorithmen.
Ziele:

m Sie verstehen choose-any und while-any.

m Sie konnen erklaren, wie Fairness den Programmablauf dndern
kann.
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Notation fiir Programme

define : <program>
choose-any
<guardl>

<statementl>
<guard2>

<statement2>

Kein Guard wahr: Abbruch
(Fehler).
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Notation fiir Programme

define : <program>
choose-any
<guardl>

<statementl>
<guard2>

<statement2>

Kein Guard wahr: Abbruch
(Fehler).
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define : <program>
define <variable> <value>
while-any
<guardl>
<statement1>
<guard2>
<statement2>

Kein Guard wahr: Nichts (Ende).
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Verkurzt

define : <program>
while-any
<guardl> : <statementl>
<guard2> : <statement2>

Angelehnt an Dijkstras Guarded Command Language.?
choose-any = if, while-any = do

Ausprobieren:
https://hg. sr. ht/ ~arnebab/ guarded-commands

2|ch nutze entgegen Dijkstras Vorstellungen ausfithrbaren Code, weil mir in
Literatur zum Thema Fehler in dem entsprechenden Pseudocode aufgefallen sind.
Dijkstras Notation produktiv: Promela language = SPIN
Draketo
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Strenge Notation

choose-any Aquivalent

if (.0 A
} else {
throw new RuntimeException("undefined branch");

}

Standard if
define : if-else-ignore
choose-any
<guardl> : <statementl>
<guard2> : <statement2>
#t : skip
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Beispiele

Nicht-Deterministisch
define : through-to-4
define x O
while-any
Ix < 4!
set! x !X + 1!
display x
B - 3
set! x O
display x
newline
1234 | 12301234 | ... to copy
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Beispiele

Nicht-Deterministisch

define : through-to-4
define x O
while-any

{x < 4}
I set!Ix !X + 1!
display x
T - 3
set! x O
display x
newline

1234 | 12301234 | ... to copy
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Atomic

define : atomic-switch

define a #t
define flag #f
while-any

a
set! flag #t
set! flag #f
: and flag a
set! a #f

Endlosschleife to copy

Abschluss
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define : euclidean a b
whlle any

b set! b Eo - aE
Eb set! a Ea - bE
values a b
to copy
GroBter gemeinsamer Teiler:

euclidean 999999 15678
;s => 117
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Fairness

Scheduler: Arten von Fairness

unbedingt fair Jeder Pfad wird irgendwann getestet3

stark fair Alle Pfade werden irgendwann getestet, deren Guard
unbegrenzt oft wahr wird

schwach fair Alle Pfade werden irgendwann getestet, deren Guard
wahr bleibt*

®Das ist der Normalfall, den wir ab jetzt ignorieren werden.
*Er wird nur auf zwei Arten wieder falsch, wenn er wahr war: sein Statement
wird ausgefiihrt oder der Prozess terminiert.
Draketo
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Fairness

Scheduler: Garantierte Fairness

m stark und schwach: geringere Garantien als bei sequenziellem
Code

m = Mehr Freiheit fiir Netz-Implementierung

m = , glinstigere” Systeme

Draketo
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Fairness

Fairness Beispiel

Motivation

define fair
define b #t
define x #f
while-any
b : set!
b set!
X set!
X set!
to copy

Draketo

Representation
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X #t
x #f
b #£f
X : not x
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Verhalten bei Fairness?
m stark

m schwach
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m stark: Guard wird getestet wenn er beliebig oft wahr wird
m schwach: Guard wird getestet, wenn er wahr bleibt

Fairness

Zusammenfassung
m Guarded actions
m Nicht deterministisch
m Fairness:
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Richtigkeit

Garantien fiir verteilte Systeme.

In theoretischer Meteorologie werden die Grenzen und
Ungenauigkeiten von Wettermodellen bewiesen, lange bevor sie
implementiert werden.

Um Versprechen von traditionellen p2p-Systemen fiir Systeme mit
hoheren Anforderungen an Verlasslichkeit zu realisieren, miissen wir
beweisen, welche Garantien wir trotz reduzierter Koordination geben
konnen.
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Ziele fur Richtigkeit

Sie verstehen, warum in verteilten Systemen einfaches Testen
schwerer ist

Sie konnen die Kriterien Sicherheit (safety) und Lebendigkeit
(liveness) beschreiben

Sie erkennen den Einfluss von Fairness und Granularitat.

Sie verstehen Beweise liber Invarianten.

Sie verstehen Riickfilhrung auf bekannte Strukturen.

Draketo
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Alle moglichen Reihenfolgen priifen?

. |
N = M n Prozesse, m Aktionen® (2)

Reihenfolge DEHI Reihenfolge DHIE Reihenfolge HIDE
P P/ P
B 5 s
—X T — H 1 —< X y——————

Reihenfolge DHEL Reihenfolge HDEI Reihenfolge HDIE

o
[

?
t

|
i
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m Kriterien fur alle Zustiande beweisen

Kriterien:

m Sicherheit (Safety)

m Lebendigkeit (Liveness)
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Sicherheit (Safety)

Es passiert nie etwas Schlechtes.

Die Temperatur steigt nie tiber 100°C

Sendet nie in einen vollen Kanal

L]
L]

m Liest nie, wihrend geschrieben wird

m Kein Verklemmen (Deadlock): Prift guards
L]

Teilweise Richtigkeit (Partial correctness): Wenn das Programm
endet, ist die Antwort richtig

Draketo
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Lebendigkeit (Liveness)

Irgendwann passiert etwas Gewlinschtes.

m Fortschritt: Kein Verhungern / livelock — recursion step

m Fairness: Kommt eine Aktion irgendwann dran?

m Beendigung (termination): Das Programm wird enden
Richtigkeit = Teilweise Richtigkeit + Beendigung

(total correctness = partial correctness + termination)
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Beispiel: Nachbarn mit unterschiedlichen Farben
define : colorme
define PO O
define P1 O
o e define P2 2
define P3 2
while-any
@ : or [{po = P1} [fpo = P2} [P0 = P3Y
set! PO : modulo {PO + 2} 4
{P1 = POY
@ set! P1 : modulo P1 + 2 4
{P2 = PO}
to copy set! P2 : modulo !PQ + 2! 4

{P3 = PO}
set! P3 : modulo {P3 + 2} 4

«rmalaaa~ DN D4 DA NO
Draketo
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Beispiel korrekt?
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Beispiel korrekt?

Teilweise Richtigkeit

Wenn alle Guards falsch sind, ist
die Anforderung immer erfiillt. v/

Guards:
m PO =P1
m PO =P2
m PO =P3
Draketo
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Beispiel korrekt?

Teilweise Richtigkeit

Wenn alle Guards falsch sind, ist Beendigung
die Anforderung immer erfiillt. v/ Bei Anfangszustand

Guards: PO=P1=0, P2=P3=2sind
= PO = P1 Endloschleifen moglich. /
m PO =P2 i
m PO =P3
Draketo
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Endlosschleife der Prozessfarben

Fairnessgarantien?

m stark

m schwach

Draketo
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Einfluss der Granularitat

define atomic-switch
define a #t
define flag #f
while-any

a
set! flag #t
set! flag #f
and flag a
set! a #f
to copy
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define nonatomic-switch

define a #t
define flag #f
while-any
a : set! flag #t
a : set! flag #f
and flag a
set! a #f

to copy



Einstieg Motivation Representation Richtigkeit Zustand Abschluss
felele) 000000 000
0000 [ee]elele]0e]

o]
0000 (o] ]
00000000000 0000

000
000000 [e]
(o]e]

Grenze: Reagierende System (open dynamic systems)

m Programme, die nicht enden sollen

m Reagieren auf die Umgebung

= Nur Programm-Teile mit diesen Methoden beweisbar
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Beweismethoden

m Asserting safety
m Liveness auf bekannte Fragen zuriickfiihren

m Praxisverweise (Programmgestiitzte Beweise)
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Asserting safety: Induktion mit Invarianten

m Sicherheitsgarantie P
m Invariante |
m Initialzustand

m Priife alle moglichen Uberginge
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Beispiel: Kommunizierende Prozesse

Endbedingung?

Draketo

define c1 : channel 0O
define c2 : channel 0O

;; (empty? c1) : there is no message in the channel

;; programs for the processes

define : T .
. define : R
define t 5 X
. define r 5
while-any .
while-any

He > o ;,; Aktion 1
send-message-to cl
set! t flt - 1

: not (empty? c2) ;; Aktion 2
receive-message-from c2
set! t [t + 1f]

Hr > off ;; Aktion 3
send-message-to c2
set! r [Ir - 1}

set! r @r + 1@

Verteilte Systeme 3: Algorithmen und Zustand

: not (empty? cl) ;; 4. 4
receive-message-from cil
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Beweis durch Induktion

m Sicherheit P: Gesamtzahl Nachrichten in Kanalen ist N < 10.
m Invariante / = (t > 0) A (r > 0) A (cl+t+ c2+r =10)

m Basis: c1 =0, c2=0, t=5, r=5 - N <10

m Schritt: | bleibt bei jeder méglichen Aktion erhalten

Aktion 1: Unverandert: (t+cl), c2, r. Da Guard {t > 0}: t >0 v
Aktion 2: Unverandert: (t+c2), c1, r. Da t nur steigt: t > 0 v

Aktion 3: Unverandert: (r+c2), c1, t. Da Guard {r > 0}: r >0 v
Aktion 4: Unverandert: (r+cl), c2, t. Da r nur steigt: r > 0 v/
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Liveness mit well-founded sets

Auf Bekanntes zuriickfithren (das WF)
— Eindeutige Abbildung f: S — WF.

Dabei muss gelten:

m Es gibt keine unendliche Folge mit wl > w2 > ... im WF.

m Beim Ubergang s1 — s2 mit wl = f(s1), w2 = f(s2) ist
wl > w2.

f. MaBfunktion (measure function)®

>: Totalordnung (z.B. > bei Ganzzahlen).

®MaBfunktion: gibt ein Element des WF zuriick, z.B. eine Zahl.

Draketo
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Beispiel:

Motivation Representation Richtigkeit Zustand Abschluss
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Auf positive Ganzzahlen zuriickfiihren

Es gibt keine unendliche Folge von positiven Ganzzahlen mit
wl>w2> ..

Ubergang s1 — s2 mit f(s1) = n, f(s2) = n — 1 — Terminiert.
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Beispiel: Phasen von Uhren synchronisieren

Uhren mit (x + 1)mod3. Fester Takt, aber Fehler moglich.

define N 20
define phases : make-list N O
define : sync i
choose-any
: member (i+1%3 i) (neighbors i)
i+2%3 i
: not : member (i+1%3 i) (neighbors i)
i+17%3 i

Hilfsfunktionen auf Folie 74.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand



Einstieg Motivation Representation
o ooo 000000
0000 0000

Synchron

00000000000000000000
11111111111111111111
22222222222222222222
00000000000000000000
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OOOOOOO
0000000 @0000000

Algorithm:

choose-any

Zustand
000
000000
00

Abschluss
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: member (i+1%3 i) (meighbors i)

i+2%3 i

: not : member (i+1%3 i) (neighbors i)

i+1%3 i

Hilfsfunktionen:

define : show-all

for-each display phases

newline
define : sync-all

set! phases :

show-all

set! phases : make-list N O

show-all

for-each sync-all :

X

map sync :

iota 3

iota N
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00020000000000000000
11111111111111111111
22222222222222222222
00000000000000000000
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OOOOO
OOOOOOO0.000000

Algorithm:

choose-any

: member (i+1%3 i) (meighbors i)

i+2%3 i

Zustand
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Abschluss
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: not : member (i+1%3 i) (neighbors i)

i+1%3 i

Hilfsfunktionen:

set! phases : make-list N O

list-set! phases 3 2

show-all
for-each sync-all

: iota 3
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Gestort 2

00010000000000000000

11222111111111111111

20000022222222222222

11111110000000000000 cet! phases : make-list N 0
22222222111111111111 list-set! phases 3 1
00000000022222222222 oo ath sync-all : iota 10
11111111110000000000

22222222222111111111

00000000000022222222

11111111111110000000

22222222222222111111
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Zufllig

12000210011100002111
01111102222221111022 ) .

define : random-phase i
22222221000000222210 inexact->exact
00000000211111100002 floor @3 * (random:uniform)m
11111111102222221111 set! phases : make-list N O
22222222221000000222 set! phases : map random-phase : iota N
00000000000211111100 show-all
11111111111102222221 for-each sync-all : iota 10
22222222222221000000
00000000000000211111
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felele) 000000 000
0000 QOO0

o]
0000 Q0
00000000000 e000

000
000000 [e]
(o]e]

Beweisidee

(== Oo=(D

Idee (ohne Beschrankung der Allgemeinheit):

ml<«—2
m2—1

Beobachtungen:

m — ¢; - = Pfeil verschiebt sich zu ¢;y1. Kein — fiir ¢
m - ¢; < = Pfeil verschiebt sich zu ¢;_1. Kein « fiir ¢,_1

m — ¢; + = Beide Pfeile verschwinden.
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Verteilte Systeme 3: Algorithmen und Zustand



Einstieg Motivation Representation Richtigkeit Zustand
000 000000 000
0000 QOO0

o]
0000 Q0
000000000000 e00

Beweis
Kostenfunktion: D = d[0] + d[1] + ... + d[n-1]

mit

dil = 0 ;-c-
= i+1;-c+
= n—i;—c-
= 1 ;= C

Jeder Veranderung der Pfeile reduziert die Kosten um 1.

Die Zahl positiven Ganzzahlen kleiner Dy ist endlich. QED.
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[e]e]e} 000000 000
0000 Q000QO

o] 000
0000 Q0 000000 [e]
0000000000000 e0 (o]e]

Weiterfiihrend

In der Praxis: Beweisprogramme wie Coq:
https://de.wikipedia.org/wiki/Coq_(Software)

m POPL Distinguished: Higher-Order Leak and Deadlock Free
Locks — bewiesenes Typsystem fiir Lockfreie Paralellitat:
https://www.youtube.com/playlist?list=
PLyrlk8Xaylp4ecKH5damlZ2FrhbauW9Fm

Tiefer einsteigen: The Little Prover (Friedman und Eastlund, 2015).

Aktuell: Konsistenz ohne Koordination (Hellerstein und Alvaro,
2019) — blog.

Draketo
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8000 e 888800 §§§88888000000. §§8000 ©
Zusammenfassung
m Alle Reihenfolgen nicht testbar: 10 Prozesse, 4 Aktionen —
103* Moglichkeiten = Kriterien fiir alle Zustinde beweisen.
m Kriterien:
m Safety: Teilweise Richtigkeit — Invariante fiir alle Uberginge
m Liveness: Beendigung (terminiert) — Riickfihrung auf
Bekanntes
m Einfluss von Fairness und Granularitat
Draketo
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o 000 000000 000 ®00

0000 0000 Q0000000 000000 o]
000000000000 000 00

Globalen Zustand

Konsistenten Zustand zusammenfiigen.

Ziele:

m Sie verstehen, welche Schwierigkeiten auftreten.

m Sie kdnnen einen konsistenten Schnitt von einem nicht
konsistenten unterscheiden.

m Sie kennen Methoden, um verschiedene Arten von globalen
Zustanden zu sammeln.

Draketo
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Richtigkeit Zustand
o] [e]e]e} 000000 000 oeo
0000 0000 Q0000000 000000
000000000000 000 00

Beispiel: Token zahlen

Es gibt 1 Token.
Wie viele Token gezahlt?
(Moglichkeiten sammeln)

Draketo
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o]
0000

Beispiel: Token zahlen

Es gibt 1 Token.
Wie viele Token gezahlt?
(Moglichkeiten sammeln)

Draketo
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Representation
felele) 000000
0000

P1 (Token in (1,2)) — ny = 0.
P2 (Token in (2,0)) — ny = 0.
=n+n-+n=20.°%

Richtigkeit Zustand Abschluss
Madglichkeiten

1 = PO (hat das Token) — ng = 1.
m P1 (Token in (1,2)) — n; = 0.
m P2 (Token in (2,0)) — n, = 0.
m=nnt+m+n=1V

2 m PO (hat das Token) — ng = 1.
m P1 (hat das Token) — n; = 1.
m P2 (hat das Token) — n, = 1.
m=nn+nm+n=317

3 m PO (Tokenin (0,1)) — ng = 0.
L]
L]
L]



Einstieg

Motivation Representation Richtigkeit Zustand Abschluss
o felele) 000000 000 ocoe
0000 0000 Q0000000 000000 o]
000000000000 000 00

Globale Zustande

m Snapshot erstellen

m Informationen verbreiten (z.B. um Topologie zu erkunden)
m Abschluss feststellen

Draketo
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Richtigkeit Zustand
o] [e]e]e} 000000 000 000
0000 0000 Q0000000 000000
000000000000 000 00

Ein in sich konsistenter Zustand.

m Ein konsistenter Snapshot ermoglicht z.B. einen roll-back.
m Alle Knoten anzuhalten ist {iblicherweise zu teuer.

m Nachtraglich empfangene Nachrichten missen gespeichert
werden.

Beispiel: Token z3hlen.

Draketo
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Representation Richtigkeit Zustand Abschluss
o 000 000000 000 000
0000 0000 00000000 0@0000 o
000000000000000 00

Bedingung fiir Snapshot: Konsistente Schnitte

Schnitte
Pl : : :
s : : comststenheut inconsistent cut
Y
; ; ; L Ll L Ll L ;
[u] 50 100 150 200 250 300 350 400

Konsistent: Enthalt alle logischen Vorginger.

Inkonsistent: Nach roll-back wiirde g N* von h* erneut erhalten.
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o] [e]e]e} 000000 000 000

0000 0000 Q0000000 00e000 [e]
00000000000 0000 (o]e]

Chandy-Lamport Algorithmus

m Initiator wird rot, speichert eigenen Zustand, sended Marker an
alle Ausgange.

m Erhalt des Markers: wird rot, speichert eigenen Zustand,
sended Marker an alle Ausgange.

Alle roten speichern empfangene weiBe Nachrichten.

m Ende: Alle sind rot, jeder hat lber jeden Eingang einen Marker
erhalten und liber jeden Ausgang einen verschickt.

m Danach: Daten einsammeln.

Draketo
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Richtigkeit Zustand Abschluss
o 000 000000 000 000
0000 0000 00000000 000000 o
000000000000000 00

Chandy-Lamport, Beispiel

Chandy-Lamport Algorithmus

L L L L}
0 50 100 150 200 250 300
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o 000 000000 000 000

0000 0000 Q0000000 0000e0
000000000000 000 00

Chandy-Lamport, Beweisidee

m Kein weiBer Prozess erhalt je eine rote Nachricht.
m Braucht FIFO-Kanile! (z.B. TCP)

m Rote Zustande, die zeitlich vor weiBen liegen, kdnnen
vertauscht werden.
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o] [e]e]e} 000000 000 000

0000 0000 Q0000000 00000e [e]
00000000000 0000 (o]e]

Beispiel: Token richtig zahlen
m PO hat Token geschickt, wird rot, speichert:
ng = 0, senty = 1, receivedy = 0, sendet Marker.
m P1 leitet Token weiter, erhalt Marker, wird rot,
speichert: n; = 0, sent; = 1, received; = 1,

@0 1 ) sendet Marker.
ONEG m P2 leitet Token weiter, erhidlt Marker, wird rot,

speichert: n, = 0, sent; = 1, received; = 1,
sendet Marker.

m PO erhalt Token, erhalt dann den Marker.
Algorithmus abgeschlossen.

(no+n1+ )+ (senty—receivedy )+(sent; — received; )+ (sent, — received, ) = 1

(7)
Draketo
Verteilte Systeme 3: Algorithmen und Zustand



Einstieg Motivation

Representation Richtigkeit Zustand Abschluss
o] [e]e]e} 000000 000 000
0000 0000 Q0000000 000000 [e]
00000000000 0000 [ 1e]

Abschluss feststellen: Dijkstra-Scholten

m Initiator sendet Signal an alle Verbundenen.

m Empfanger sendet Signal an alle Folgenden, sendet Ack, wenn
m Berechnung terminiert, und
m alle Folgenden Ack geschickt haben

m Wenn Initiator so viele Acks wie Signale erhalten hat, ist die
Berechnung terminiert.
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o] [e]e]e} 000000 000 000
0000 0000 Q0000000 Q00000 o]
000000000000 000 oe
Zusammenfassung
m Token zahlen ist nicht-trivial
m Konsistente Schnitte missen alle logisch fritheren Daten
enthalten
m Chandy-Lamport sendet Farbmarker
m Broadcast
m Abschluss feststellen: Dijkstra-Scholten
Draketo
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o felele) 000000 000 000

0000 0000 Q0000000 000000
000000000000 000 00

Auf dass Sie furchtlos Garantien geben kénnen!
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©00000000
0000

Notation fiir Daten

define-record-type <message>
message a b ¢ ;; Konstruktor
message? ;; Test
a message-a ;; Getter
b message-b
C message-c
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Literatur

copy-paste Programme

Kopierbare Versionen der Programmschnipsel.
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9000000

00
ele]

Through-to-4

define : through-to-4

___ define x O

_ while-any

_______ X < 4
___________ set! x x + 1

___________ display x

_______ IX = 3!

___________ set! x O

___________ display x
_ newline

Folie

Draketo
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9000000
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60

atomic

define : atomic-switch
___ define a #t
___ define flag #f

_ while-any

_______ a

___________ set! flag #t
___________ set! flag #f
_______ : and flag a

___________ set! a #f
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Literatur
QQO00000

Euclidean

define : euclidean a b
_ while-any

________ {a < B} : set! b {b - al}
________ {b < a}f : set! a {a - b}
___values a b

Folie
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000008000
QQO00000

o]
(e]e]

Literatur

[ole!

Fairness

define : fair
_ define b #t
_ define x #f
while-any
_____ b : set! x #t
b : set! x #f
x : set! b #f
X set! x : not x
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Verteilte Systeme 3: Algorithmen und Zustand



Werkzeuge Literatur
000000800

Q000000

00

felele)

colorme

define : colorme
_ define PO O
_ define P1 O
_ define P2 2
_ define P3 2
___ while-any
_______ : or [{Po = P1}j {lP0 = P2} {PO = P3}
_________ set! PO : modulo !PO + 24 4

_______ {P1 = PO

_________ set! P1 : modulo !Pl + 2@ 4

_______ P2 = PO

_________ set! P2 : modulo [(P2 + 2| 4

_______ {p3 = Po@

_________ set! P3 modulo IP3 + 2@ 4
_ values PO P1 P2 P3

Folie
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000000080

9000000

00

ele]

atomic switch

define : atomic-switch
___ define a #t
___ define flag #f

_ while-any
___________ set! flag #t
___________ set! flag #f
_______ : and flag a
___________ set! a #f
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000000008

9000000

00

ele]

non-atomic switch

define : nonatomic-switch
___ define a #t
___ define flag #f

_ while-any
_______ a : set! flag #t
_______ a : set! flag #f
_______ : and flag a
_____________ set! a #f
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©000000

[ole}

felele)

while-any/deterministic

define-syntax-rule
while #t
cond guarded
else
break

while-any guarded
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choose-any /correct basics

import : ice-9 pretty-print
srfi :1 lists
srfi srfi-9
only (srfi :26) cut
prefix (fibers channels) fibers:
prefix (fibers) fibers:
;; fibers 1.0 and 1.1 compat
false-if-exception
import : fibers internal
false-if-exception
import : fibers scheduler

random-state-from-platform
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felele)

choose-any /correct (delayed evaluation)

define-

syntax wrap-all-in-lambda

lambda : x
syntax case x (SEPARATOR)

#T

#

(done ...) SEPARATOR
begin (1lst done ...)

(done ...) SEPARATOR (guard action ...) guarded ...

wrap-all-in-lambda

(done ... (cons (lambda() guard) (lambda() action ..

. SEPARATOR guarded ...

_ (guard action ...) guarded ...

wrap-all-in-lambda
((cons (lambda () guard) (lambda() action ...)))

. SEPARATOR guarded ...

Draketo
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Literatur
o)
(e]e]

[ole!

choose-any/correct |

define : shuffle items

sort items : A (x y) !(random:uniform) < O.SE

define : choose-any/internal guards

let loop : : guards : shuffle guards
when : not : null? guards

let : : guard : car guards
if ((car guard)) ;; gets and calls the lambda

cdr guard ;; gets and calls the lambda
loop : cdr guards

Draketo
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Literatur
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choose-any/correct

define-syntax-rule choose-any guarded
choose-any/internal

wrap-all-in-lambda guarded
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Literatur
o)
(e]e]

[ole!

while-any/correct

define : while-any/internal guards
while #t

let loop : : guards : shuffle guards
when : null? guards
break
let : : guard : car guards
if : (car guard) ;; gets and calls the lambda
: cdr guard ;; gets and calls the lambda
loop : cdr guards

define-syntax-rule : while-any guarded ...
while-any/internal

wrap-all-in-lambda guarded ...
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felele)

channel tools |

define-record-type <channel>
channel message-count
channel?

message-count
channel-message-count
channel-message-count-set!
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channel tools I

define : send-message-to chan

channel-message-count-set! chan

+ 1 channel-message-count chan

define : receive-message-from chan

channel-message-count-set! chan

+ -1 channel-message-count chan

define : empty? chan

equal? O channel-message-count chan
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Phase helpers

define (phase i) : list-ref phases i

define (i+1%3 i) : modulo E(phase i) + 1E 3
define (i+2%3 i) : modulo E(phase i) + 2E 3
define : neighbors i

take : drop phases (max 0 { 1
m1n3N— 1—1.I!+2II
define : random-phase i
inexact->exact : floor : * 3 : random:uniform .

Draketo
Verteilte Systeme 3: Algorithmen und Zustand



Werkzeuge Literatur
000000000
$300000
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Zustandsbroadcast Implementierung

/Zustands-Broadcast all-to-all |

define : broadcast init out in

define V init

define W '()

define inqueue '()

pretty-print V

while-any

: not : equal? VW ;; Schritt 1

send-to-all out : lset-difference equal? V W
set! WV
pretty-print W
check-in-has-input!? inqueue in ;; Schritt 2
set! V : apply lset-union equal? V inqueue
set! inqueue '()
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Zustandsbroadcast Implementierung

Zustands-Broadcast all-to-all |l
pretty-print V
pretty-print V
v

define : send-to-all channels value
for-each : cut fibers:put-message <> value
channels
define : receive-from-all channels
map fibers:get-message channels
define-syntax-rule : check-in-has-input!? inqueue in

begin
set! inqueue : receive-from-all in
: A _ : not : every empty? inqueue

define : make-buffered-channel
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Zustandsbroadcast Implementierung

/Zustands-Broadcast all-to-all 11l

define chan-in : fibers:make-channel
define chan-out : fibers:make-channel
fibers:

define N 3
define init-values : map list : iota N
;; connect every channel to every other channel
define out-channels

map (A _ ') : iota N
define in-channels

map (A _ '()) : iota N
let loop : (N N)

when : not : zero? N

for-each
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Zustandsbroadcast Implementierung

/Zustands-Broadcast all-to-all IV
A (n)

let-values : ((chan-in chan-out) (fibers:make-chani
list-set! out-channels EN - 1!
cons chan : list-ref out-channels EN - 1!
list-set! in-channels n
cons chan : list-ref in-channels n
let : (chan (fibers:make-channel))
list-set! in-channels !N - 1!
cons chan : list-ref in-channels EN - 1!
list-set! out-channels n
cons chan : list-ref out-channels n
iota EN - 1!
loop !N - 1!
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Zustandsbroadcast Implementierung

/ustands-Broadcast all-to-all V

fibers:run-fibers
A
map
A (init out in)
fibers:spawn-fiber

A

broadcast init out in

init-values out-channels in-channels
#:drain? #t

Auf strongly connected graph: Jeder Knoten in Richtung der Kanten
(,,in Pfeilrichtung"”) erreichbar.
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Zustandsbroadcast Implementierung

Zustands-Broadcast terminiert

Wertungsfunktion:

Y = (V()7 V1, veuy Vn—la C0,Cly--ny Cm_1)
c Kanalinhalt
V Zustand

In Schritt 1 wachst c.
In Schritt 2 wachst V.

Terminiert, weiBB aber nicht, wann.
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Logikprogrammierung

Automatisierte Beweise durch Riickfiihrung auf bewiesene Axiome

m Minimalableitung:

m {7} x=1 {x=1};
m Trivial m?=(1=1)=true
m {P} skip {P} m {true} x=1 {x =1}
m Variablenersetzung m Ebenso:

m {Q[x + E]} xx== E {Q} m {?} x:= 100 {x=0}

m ? = (100 = 0) = false
m {false} x=1 {x = 1}
Kein Beweis der Terminierung = Safety, nicht Liveness.
Aquivalent zu ,Wenn alle Guards false sind, ist der Zustand richtig"
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Pradikatumformung (predicate transformers)

wp(S, false) = false

m S: Programm
m wp(S, Zielzustand) = Bedingung

m Kein Programm kann false erfiillen

wp(while-any, Q) = 3k > 0: Hx(Q) (10)
m k: Schritte
m Hi(Q): Alle Zusténde, die nach k Schritten terminieren.
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Beispiel fir Pradikatumformung

define : toss
define x 'egal
choose-any
#t : set! x O
#t : set! x 1

wp(toss,x =0) = false
wp(toss,x = 1) = false
wp(toss,x =0V x=1) = true
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