Einstieg Motivation Representation Richtigkeit Zustand
felele) 000000 000
0000 QOQ0QO

[]
0000 Q0
00000000000 0000

000
000000
(o]e]

Willkommen bei Verteilte Systeme!

Von Datenbanken
tiber Webdienste
bis zu p2p und Sensornetzen.

Heute: Algorithmen und Zustand.
Wer nichts garantiert, kann alles verteilen. Aber ... ?

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

o] [e]e]e} 000000 000

@000 0000 Q0000000
00000000000 0000

Wiederholung Vorlesung 2 (Zeit)
Reale Uhren:

m wall time vs. monotonic clocks
m Skew und Drift
m Synchronisieren: extern (Cristian, NTP), intern (Berkeley)

Logische Uhren:

m Lamport: Ein Zahler pro Knoten. ,Wenn es vorher war, dann ist
der Zeitstempel kleiner.”
m Vektor: N Zahler in jedem der N Knoten. Kausalitat. ,Wenn
der Zeitstempel kleiner ist, dann war es vorher.”
m sonst vielleicht gleichzeitig.

Ausschluss: Koordinator oder verteilt = Zusatzliche Nachrichten.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand
felele) 000000 000
0000 QOQ0QO

[o]
[e] le]e] Q0
00000000000 0000

000
000000
(o]e]

Literatur

Distributed Systems - An Algorithmic Approach
— Sukumar Ghosh (2015).

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit Zustand
felele) 000000 000
0000 QOQ0QO

e Q0 888000
[e]e] o]
00000000000 0000 (o]e]

Ablauf heute

m Warum?
m Wie? Representation und Fairness
m Richtigkeit 1: Sicherheit und Lebendigkeit

--- PAUSE ---

m Beispiel: Prozess-Farben
m Richtigkeit: Beweismethoden

m Zustand

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
[o] [e]e]e} 000000 000

[e]e]e]] 0000 Q0000000
[e]e]e]e]e]e]

000
000000 [e]
000000000 (o]e]

Ziele heute |

Sie verstehen, wieso in verteilten Algorithmen nicht einfach alle
Méglichkeiten gepriift werden kdnnen.

m Sie verstehen, warum Richtigkeit aus Sicherheit und
Lebendigkeit besteht.

m Sie kennen Definition (iber nichtdeterministische guarded
commands.

m Sie verstehen Beweise iiber Invarianten und Riickfiihrung auf
bekannte Strukturen.

m Sie kénnen erkldren, wie ein Schnappschuss des
Gesamtzustandes erstellt wird.

m Sie kdnnen erldren, wie Dijkstra-Scholten den Abschluss
feststellt.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
€00 000000 000
0000 QOQ0QO

o]
0000 Q0
00000000000 0000

000
000000 [e]
(o]e]

Verteilte Ausfiihrung: Abfolgen von Zustanden

AB*CDE*FL oder AB*GHI*FL oder AB*GJKI*FL?

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

o] oeo 000000 000 000
0000 0000 Q0000000 000000 o]
000000000000 000 00
Alle moglichen Reihenfolgen priifen?
(n-m)! : 1
N = ~——=; n Prozesse, m Aktionen (1)
(mt)?
Einfachster Fall:
Reihenfolge DEHI Reihenfolge DHIE Reihenfolge HIDE
13 & 1/ : :
S, S, S, i i
7,—.—.—(: X > - H 1 7'—< : X : >—'—*: :
Reihenfolge DHEI Reihenfolge HDEI Reihenfolge HDIE
3 [® [® : :
D
5 5 5 A
'n=2m=2=N=g5=2=6n=10,m=4= N> 10*

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand
ocoe 000000 000
0000 Q000000

o]
0000 Q
00000000000 0000

000
000000
(o]e]

Kriterien statt Zustande

o Alle Zustinde ot

m Kriterien fir alle Zustande beweisen

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o felele) ©00000 000 000
0000 0000 Q0000000 000000 o]
000000000000 000 00

Reprasentation

Darstellung von verteilten Algorithmen.
Ziele:

m Sie verstehen choose-any und while-any.

m Sie konnen erklaren, wie Fairness den Programmablauf dndern
kann.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation
o 000 0@0000
0000 0000

Notation fiir Programme

define : <program>
choose-any
<guardl>

<statementl>
<guard2>

<statement2>

Kein Guard wahr: Abbruch
(Fehler).

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Richtigkeit

000
Q0000000
00000000000 0000

Zustand
000
000000
00

Abschluss
o]

Einstieg Motivation Representation

o] [e]e]e} O@0000
0000 0000

Notation fiir Programme

define : <program>
choose-any
<guardl>

<statementl>
<guard2>

<statement2>

Kein Guard wahr: Abbruch
(Fehler).

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Richtigkeit Zustand Abschluss
000 000

Q0000000 000000 o]
000000000000 000 00

define : <program>
define <variable> <value>
while-any
<guardl>
<statement1>
<guard2>
<statement2>

Kein Guard wahr: Nichts (Ende).

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o ooo 00®000 000
0000 0000 Q00000

000
Q0 000000 [e]
00000000000 0000 (o]e]

Verkurzt

define : <program>
while-any
<guardl> : <statementl>
<guard2> : <statement2>

Angelehnt an Dijkstras Guarded Command Language.?
choose-any = if, while-any = do

Ausprobieren:
https://hg. sr. ht/ ~arnebab/ guarded-commands

2|ch nutze entgegen Dijkstras Vorstellungen ausfithrbaren Code, weil mir in
Literatur zum Thema Fehler in dem entsprechenden Pseudocode aufgefallen sind.
Dijkstras Notation produktiv: Promela language = SPIN
Draketo
Verteilte Systeme 3: Algorithmen und Zustand

https://en.wikipedia.org/wiki/Guarded_Command_Language
https://hg.sr.ht/~arnebab/guarded-commands
https://en.wikipedia.org/wiki/Promela
https://spinroot.com/spin/whatispin.html

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

[e]e]e} [e]ele] lole] 000 000
0000 Q00000 880000 [e]

o]
0000 Q0
00000000000 0000

Strenge Notation

choose-any Aquivalent

if (.0 A
} else {
throw new RuntimeException("undefined branch");

}

Standard if
define : if-else-ignore
choose-any
<guardl> : <statementl>
<guard2> : <statement2>
#t : skip

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation
o 000 000080
0000 0000

Beispiele

Nicht-Deterministisch
define : through-to-4
define x O
while-any
Ix < 4!
set! x !X + 1!
display x
B - 3
set! x O
display x
newline
1234 | 12301234 | ... to copy

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Richtigke

000
Q00000
[e]e]e]e]e]e]

it

Q0
000000000

Zustand
000
000000
00

Abschluss
o]

Einstieg Motivation Representation

o] [e]e]e} [e]elele] Je}
0000 0000

Beispiele

Nicht-Deterministisch

define : through-to-4
define x O
while-any

{x < 4}
I set!Ix !X + 1!
display x
T - 3
set! x O
display x
newline

1234 | 12301234 | ... to copy

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Richtigkeit Zustand

000 000
00000000 000000
000000000000 000 00
Atomic

define : atomic-switch

define a #t
define flag #f
while-any

a
set! flag #t
set! flag #f
: and flag a
set! a #f

Endlosschleife to copy

Abschluss
o]

Einstieg Motivation Representation

Rlchtlgke\t Zustand
o 000 [ee]elele] J 000
0000 0000 88800000 000000
000000000000000 00

define : euclidean a b
whlle any

b set! b Eo - aE
Eb set! a Ea - bE
values a b
to copy
GroBter gemeinsamer Teiler:

euclidean 999999 15678
;s => 117

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o] [e]e]e} 000000 000

0000 @000 Q0000000
[e]e]e]e]e}

000
000000 [e]
000000000 (o]e]

Fairness

Scheduler: Arten von Fairness

unbedingt fair Jeder Pfad wird irgendwann getestet3

stark fair Alle Pfade werden irgendwann getestet, deren Guard
unbegrenzt oft wahr wird

schwach fair Alle Pfade werden irgendwann getestet, deren Guard
wahr bleibt*

®Das ist der Normalfall, den wir ab jetzt ignorieren werden.
*Er wird nur auf zwei Arten wieder falsch, wenn er wahr war: sein Statement
wird ausgefiihrt oder der Prozess terminiert.
Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o felele) 000000 000 000
0000 [e] le]e} Q0000000 000000 o]
000000000000 000 00

Fairness

Scheduler: Garantierte Fairness

m stark und schwach: geringere Garantien als bei sequenziellem
Code

m = Mehr Freiheit fiir Netz-Implementierung

m = , glinstigere” Systeme

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg
o
0000

Fairness

Fairness Beispiel

Motivation

define fair
define b #t
define x #f
while-any
b : set!
b set!
X set!
X set!
to copy

Draketo

Representation

000000
[e]e] o]

X #t
x #f
b #£f
X : not x

Verteilte Systeme 3: Algorithmen und Zustand

Richtigkeit Zustand
000 000
Q0000000 000000
000000000000 000 00

Verhalten bei Fairness?
m stark

m schwach

Abschluss
o]

Einstieg Motivation Representation

Richtigkeit Zustand Abschluss
000 000

Q0000000 000000 o]
000000000000 000 00

m stark: Guard wird getestet wenn er beliebig oft wahr wird
m schwach: Guard wird getestet, wenn er wahr bleibt

Fairness

Zusammenfassung
m Guarded actions
m Nicht deterministisch
m Fairness:

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
[e]e]e} 000000 @00
0000 Q000QO

o]
0000 Q0
00000000000 0000

000
000000 [e]
(o]e]

Richtigkeit

Garantien fiir verteilte Systeme.

In theoretischer Meteorologie werden die Grenzen und
Ungenauigkeiten von Wettermodellen bewiesen, lange bevor sie
implementiert werden.

Um Versprechen von traditionellen p2p-Systemen fiir Systeme mit
hoheren Anforderungen an Verlasslichkeit zu realisieren, miissen wir
beweisen, welche Garantien wir trotz reduzierter Koordination geben
konnen.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o] [e]e]e} 000000 oeo
0000 0000 Q000QO

000
Q0 000000 [e]
00000000000 0000 (o]e]

Ziele fur Richtigkeit

Sie verstehen, warum in verteilten Systemen einfaches Testen
schwerer ist

Sie konnen die Kriterien Sicherheit (safety) und Lebendigkeit
(liveness) beschreiben

Sie erkennen den Einfluss von Fairness und Granularitat.

Sie verstehen Beweise liber Invarianten.

Sie verstehen Riickfilhrung auf bekannte Strukturen.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

o 000 000000 ooce 000

0000 0000 00000000 000000 o
000000000000000 00

Alle moglichen Reihenfolgen priifen?

. |
N = M n Prozesse, m Aktionen® (2)

Reihenfolge DEHI Reihenfolge DHIE Reihenfolge HIDE
P P/ P
B 5 s
—X T — H 1 —< X y——————

Reihenfolge DHEL Reihenfolge HDEI Reihenfolge HDIE

o
[

?
t

|
i

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand

8000 0 888800 §§§888880000000 §§8000
Kriterien

u AfleZustind o

m Kriterien fur alle Zustiande beweisen

Kriterien:

m Sicherheit (Safety)

m Lebendigkeit (Liveness)
Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
[e]e]e} 000000 000
0000 [o] lelelele]

o]
0000 00
0000000000000 0

000
000000 [e]
(o]e]

Sicherheit (Safety)

Es passiert nie etwas Schlechtes.

Die Temperatur steigt nie tiber 100°C

Sendet nie in einen vollen Kanal

L]
L]

m Liest nie, wihrend geschrieben wird

m Kein Verklemmen (Deadlock): Prift guards
L]

Teilweise Richtigkeit (Partial correctness): Wenn das Programm
endet, ist die Antwort richtig

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand
[e]e]e} 000000 000
0000 [e]e] lelele]

o]
0000 00
0000000000000 0

Lebendigkeit (Liveness)

Irgendwann passiert etwas Gewlinschtes.

m Fortschritt: Kein Verhungern / livelock — recursion step

m Fairness: Kommt eine Aktion irgendwann dran?

m Beendigung (termination): Das Programm wird enden
Richtigkeit = Teilweise Richtigkeit + Beendigung

(total correctness = partial correctness + termination)

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss

[e]

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
000 000000 000
0000 [eele] lele]

o]
0000 00
0000000000000 0

000
000000 [e]
(o]e]

Beispiel: Nachbarn mit unterschiedlichen Farben
define : colorme
define PO O
define P1 O
o e define P2 2
define P3 2
while-any
@ : or [{po = P1} [fpo = P2} [P0 = P3Y
set! PO : modulo {PO + 2} 4
{P1 = POY
@ set! P1 : modulo P1 + 2 4
{P2 = PO}
to copy set! P2 : modulo !PQ + 2! 4

{P3 = PO}
set! P3 : modulo {P3 + 2} 4

«rmalaaa~ DN D4 DA NO
Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
000 000000 000
0000 0000@00

o]
0000 (o]
00000000000 0000

000
000000 [e]
(o]e]

Beispiel korrekt?

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit

Zustand
o felele) 000000
0000 0000

000 000
0000@000 000000
00000000000 0000 (o]e]

Beispiel korrekt?

Teilweise Richtigkeit

Wenn alle Guards falsch sind, ist
die Anforderung immer erfiillt. v/

Guards:
m PO =P1
m PO =P2
m PO =P3
Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit

Zustand Abschluss
o] [e]e]e} 000000
0000 0000

000
[e]e]e]e] lo]

000
00 000000 [e]
00000000000 0000 (o]e]

Beispiel korrekt?

Teilweise Richtigkeit

Wenn alle Guards falsch sind, ist Beendigung
die Anforderung immer erfiillt. v/ Bei Anfangszustand

Guards: PO=P1=0, P2=P3=2sind
= PO = P1 Endloschleifen moglich. /
m PO =P2 i
m PO =P3
Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Motivation
[e]e]e}

Einstieg
o
0000

Representation
000000
0000

Richtigkeit
000
00000000

0000000000000 0

Endlosschleife der Prozessfarben

Fairnessgarantien?

m stark

m schwach

Draketo

B v

2,0,2,2

(P2
cC_ v

2,0,0,2

PO

o

Verteilte Systeme 3: Algorithmen und Zustand

P3/
< m2,0,0,0 |
t“ o ‘l\ ~
P2 N
, N
| .
.
r
y
F
PO

Zustand

000
000000
(o]e]

Abschluss
o]

Einstieg Motivation Representation

o] [e]e]e} 000000
0000 0000

Einfluss der Granularitat

define atomic-switch
define a #t
define flag #f
while-any

a
set! flag #t
set! flag #f
and flag a
set! a #f
to copy

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Richtigkeit Zustand Abschluss
000 000

Q0000080 000000 o]
000000000000 000 00

define nonatomic-switch

define a #t
define flag #f
while-any
a : set! flag #t
a : set! flag #f
and flag a
set! a #f

to copy

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
felele) 000000 000
0000 [ee]elele]0e]

o]
0000 (o]]
00000000000 0000

000
000000 [e]
(o]e]

Grenze: Reagierende System (open dynamic systems)

m Programme, die nicht enden sollen

m Reagieren auf die Umgebung

= Nur Programm-Teile mit diesen Methoden beweisbar

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand
000 000000 000
0000 [o]e]e]ele]0e]

o]
0000 Q0
000000000000000

000
000000
(o]e]

Beweismethoden

m Asserting safety
m Liveness auf bekannte Fragen zuriickfiihren

m Praxisverweise (Programmgestiitzte Beweise)

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit Zustand
000 000000 000
0000 QOO0

o]
0000 Q0
O®0000000000000

000
000000
(o]e]

Asserting safety: Induktion mit Invarianten

m Sicherheitsgarantie P
m Invariante |
m Initialzustand

m Priife alle moglichen Uberginge

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation

o] [e]e]e}
0000

Representation Richtigkeit Zustand Abschluss

000000 000 000
0000 Q0000000 000000 [e]
00@000000000000 (o]e]

Beispiel: Kommunizierende Prozesse

Endbedingung?

Draketo

define c1 : channel 0O
define c2 : channel 0O

;; (empty? c1) : there is no message in the channel

;; programs for the processes

define : T .
. define : R
define t 5 X
. define r 5
while-any .
while-any

He > o ;,; Aktion 1
send-message-to cl
set! t flt - 1

: not (empty? c2) ;; Aktion 2
receive-message-from c2
set! t [t + 1f]

Hr > off ;; Aktion 3
send-message-to c2
set! r [Ir - 1}

set! r @r + 1@

Verteilte Systeme 3: Algorithmen und Zustand

: not (empty? cl) ;; 4. 4
receive-message-from cil

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
[e]e]e} 000000 000 000
0000 Q0000000 880000 [e]

o]
0000
000@00000000000

Beweis durch Induktion

m Sicherheit P: Gesamtzahl Nachrichten in Kanalen ist N < 10.
m Invariante / = (t > 0) A (r > 0) A (cl+t+ c2+r =10)

m Basis: c1 =0, c2=0, t=5, r=5 - N <10

m Schritt: | bleibt bei jeder méglichen Aktion erhalten

Aktion 1: Unverandert: (t+cl), c2, r. Da Guard {t > 0}: t >0 v
Aktion 2: Unverandert: (t+c2), c1, r. Da t nur steigt: t > 0 v

Aktion 3: Unverandert: (r+c2), c1, t. Da Guard {r > 0}: r >0 v
Aktion 4: Unverandert: (r+cl), c2, t. Da r nur steigt: r > 0 v/

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit

Zustand Abschluss
o] [e]e]e} 000000
0000 0000

000
Q00000

000
Q0 000000 [e]
0O000@0000000000 (o]e]

Liveness mit well-founded sets

Auf Bekanntes zuriickfithren (das WF)
— Eindeutige Abbildung f: S — WF.

Dabei muss gelten:

m Es gibt keine unendliche Folge mit wl > w2 > ... im WF.

m Beim Ubergang s1 — s2 mit wl = f(s1), w2 = f(s2) ist
wl > w2.

f. MaBfunktion (measure function)®

>: Totalordnung (z.B. > bei Ganzzahlen).

®MaBfunktion: gibt ein Element des WF zuriick, z.B. eine Zahl.

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg
o
0000

Beispiel:

Motivation Representation Richtigkeit Zustand Abschluss
000 000000 000
0000 QOO0

000
Q0 000000 [e]
0O0000e000000000 (o]e]

Auf positive Ganzzahlen zuriickfiihren

Es gibt keine unendliche Folge von positiven Ganzzahlen mit
wl>w2> ..

Ubergang s1 — s2 mit f(s1) = n, f(s2) = n — 1 — Terminiert.

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o 000 000000 000
0000 0000 QOO0

000
00 000000 [e]
0O00000e00000000 (o]e]

Beispiel: Phasen von Uhren synchronisieren

Uhren mit (x + 1)mod3. Fester Takt, aber Fehler moglich.

define N 20
define phases : make-list N O
define : sync i
choose-any
: member (i+1%3 i) (neighbors i)
i+2%3 i
: not : member (i+1%3 i) (neighbors i)
i+17%3 i

Hilfsfunktionen auf Folie 74.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation
o ooo 000000
0000 0000

Synchron

00000000000000000000
11111111111111111111
22222222222222222222
00000000000000000000

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Rlchtlgkelt

OOOOOOO
0000000 @0000000

Algorithm:

choose-any

Zustand
000
000000
00

Abschluss
o]

: member (i+1%3 i) (meighbors i)

i+2%3 i

: not : member (i+1%3 i) (neighbors i)

i+1%3 i

Hilfsfunktionen:

define : show-all

for-each display phases

newline
define : sync-all

set! phases :

show-all

set! phases : make-list N O

show-all

for-each sync-all :

X

map sync :

iota 3

iota N

Einstieg Motivation Representation
o ooo 000000
0000 0000

Gestort 1

00020000000000000000
11111111111111111111
22222222222222222222
00000000000000000000

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Rlchtlgkeit

OOOOO
OOOOOOO0.000000

Algorithm:

choose-any

: member (i+1%3 i) (meighbors i)

i+2%3 i

Zustand

000
000000
(o]e]

Abschluss
o]

: not : member (i+1%3 i) (neighbors i)

i+1%3 i

Hilfsfunktionen:

set! phases : make-list N O

list-set! phases 3 2

show-all
for-each sync-all

: iota 3

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o felele) 000000 000 000
0000 0000 Q0000000 000000 o]
000000000 e00000 00

Gestort 2

00010000000000000000

11222111111111111111

20000022222222222222

11111110000000000000 cet! phases : make-list N 0
22222222111111111111 list-set! phases 3 1
00000000022222222222 oo ath sync-all : iota 10
11111111110000000000

22222222222111111111

00000000000022222222

11111111111110000000

22222222222222111111

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

Zufllig

12000210011100002111
01111102222221111022) .

define : random-phase i
22222221000000222210 inexact->exact
00000000211111100002 floor @3 * (random:uniform)m
11111111102222221111 set! phases : make-list N O
22222222221000000222 set! phases : map random-phase : iota N
00000000000211111100 show-all
11111111111102222221 for-each sync-all : iota 10
22222222222221000000
00000000000000211111

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
felele) 000000 000
0000 QOO0

o]
0000 Q0
00000000000 e000

000
000000 [e]
(o]e]

Beweisidee

(== Oo=(D

Idee (ohne Beschrankung der Allgemeinheit):

ml<«—2
m2—1

Beobachtungen:

m — ¢; - = Pfeil verschiebt sich zu ¢;y1. Kein — fiir ¢
m - ¢; < = Pfeil verschiebt sich zu ¢;_1. Kein « fiir ¢,_1

m — ¢; + = Beide Pfeile verschwinden.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand
000 000000 000
0000 QOO0

o]
0000 Q0
000000000000 e00

Beweis
Kostenfunktion: D = d[0] + d[1] + ... + d[n-1]

mit

dil = 0 ;-c-
= i+1;-c+
= n—i;—c-
= 1 ;= C

Jeder Veranderung der Pfeile reduziert die Kosten um 1.

Die Zahl positiven Ganzzahlen kleiner Dy ist endlich. QED.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

—~
(2N
N—

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

[e]e]e} 000000 000
0000 Q000QO

o] 000
0000 Q0 000000 [e]
0000000000000 e0 (o]e]

Weiterfiihrend

In der Praxis: Beweisprogramme wie Coq:
https://de.wikipedia.org/wiki/Coq_(Software)

m POPL Distinguished: Higher-Order Leak and Deadlock Free
Locks — bewiesenes Typsystem fiir Lockfreie Paralellitat:
https://www.youtube.com/playlist?list=
PLyrlk8Xaylp4ecKH5damlZ2FrhbauW9Fm

Tiefer einsteigen: The Little Prover (Friedman und Eastlund, 2015).

Aktuell: Konsistenz ohne Koordination (Hellerstein und Alvaro,
2019) — blog.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

https://de.wikipedia.org/wiki/Coq_(Software)
https://www.youtube.com/playlist?list=PLyrlk8Xaylp4ecKH5damlZ2FrhbauW9Fm
https://www.youtube.com/playlist?list=PLyrlk8Xaylp4ecKH5damlZ2FrhbauW9Fm
https://blog.acolyer.org/2019/03/06/keeping-calm-when-distributed-consistency-is-easy/

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

8000 e 888800 §§§88888000000. §§8000 ©
Zusammenfassung
m Alle Reihenfolgen nicht testbar: 10 Prozesse, 4 Aktionen —
103* Moglichkeiten = Kriterien fiir alle Zustinde beweisen.
m Kriterien:
m Safety: Teilweise Richtigkeit — Invariante fiir alle Uberginge
m Liveness: Beendigung (terminiert) — Riickfihrung auf
Bekanntes
m Einfluss von Fairness und Granularitat
Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

o 000 000000 000 ®00

0000 0000 Q0000000 000000 o]
000000000000 000 00

Globalen Zustand

Konsistenten Zustand zusammenfiigen.

Ziele:

m Sie verstehen, welche Schwierigkeiten auftreten.

m Sie kdnnen einen konsistenten Schnitt von einem nicht
konsistenten unterscheiden.

m Sie kennen Methoden, um verschiedene Arten von globalen
Zustanden zu sammeln.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation

Richtigkeit Zustand
o] [e]e]e} 000000 000 oeo
0000 0000 Q0000000 000000
000000000000 000 00

Beispiel: Token zahlen

Es gibt 1 Token.
Wie viele Token gezahlt?
(Moglichkeiten sammeln)

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation

o]
0000

Beispiel: Token zahlen

Es gibt 1 Token.
Wie viele Token gezahlt?
(Moglichkeiten sammeln)

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Representation
felele) 000000
0000

P1 (Token in (1,2)) — ny = 0.
P2 (Token in (2,0)) — ny = 0.
=n+n-+n=20.°%

Richtigkeit Zustand Abschluss
Madglichkeiten

1 = PO (hat das Token) — ng = 1.
m P1 (Token in (1,2)) — n; = 0.
m P2 (Token in (2,0)) — n, = 0.
m=nnt+m+n=1V

2 m PO (hat das Token) — ng = 1.
m P1 (hat das Token) — n; = 1.
m P2 (hat das Token) — n, = 1.
m=nn+nm+n=317

3 m PO (Tokenin (0,1)) — ng = 0.
L]
L]
L]

Einstieg

Motivation Representation Richtigkeit Zustand Abschluss
o felele) 000000 000 ocoe
0000 0000 Q0000000 000000 o]
000000000000 000 00

Globale Zustande

m Snapshot erstellen

m Informationen verbreiten (z.B. um Topologie zu erkunden)
m Abschluss feststellen

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation

Richtigkeit Zustand
o] [e]e]e} 000000 000 000
0000 0000 Q0000000 000000
000000000000 000 00

Ein in sich konsistenter Zustand.

m Ein konsistenter Snapshot ermoglicht z.B. einen roll-back.
m Alle Knoten anzuhalten ist {iblicherweise zu teuer.

m Nachtraglich empfangene Nachrichten missen gespeichert
werden.

Beispiel: Token z3hlen.

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation

Representation Richtigkeit Zustand Abschluss
o 000 000000 000 000
0000 0000 00000000 0@0000 o
000000000000000 00

Bedingung fiir Snapshot: Konsistente Schnitte

Schnitte
Pl : : :
s : : comststenheut inconsistent cut
Y
; ; ; L Ll L Ll L ;
[u] 50 100 150 200 250 300 350 400

Konsistent: Enthalt alle logischen Vorginger.

Inkonsistent: Nach roll-back wiirde g N* von h* erneut erhalten.

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

o] [e]e]e} 000000 000 000

0000 0000 Q0000000 00e000 [e]
00000000000 0000 (o]e]

Chandy-Lamport Algorithmus

m Initiator wird rot, speichert eigenen Zustand, sended Marker an
alle Ausgange.

m Erhalt des Markers: wird rot, speichert eigenen Zustand,
sended Marker an alle Ausgange.

Alle roten speichern empfangene weiBe Nachrichten.

m Ende: Alle sind rot, jeder hat lber jeden Eingang einen Marker
erhalten und liber jeden Ausgang einen verschickt.

m Danach: Daten einsammeln.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation

Richtigkeit Zustand Abschluss
o 000 000000 000 000
0000 0000 00000000 000000 o
000000000000000 00

Chandy-Lamport, Beispiel

Chandy-Lamport Algorithmus

L L L L}
0 50 100 150 200 250 300

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand

o 000 000000 000 000

0000 0000 Q0000000 0000e0
000000000000 000 00

Chandy-Lamport, Beweisidee

m Kein weiBer Prozess erhalt je eine rote Nachricht.
m Braucht FIFO-Kanile! (z.B. TCP)

m Rote Zustande, die zeitlich vor weiBen liegen, kdnnen
vertauscht werden.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
o]

Einstieg Motivation Representation Richtigkeit Zustand Abschluss

o] [e]e]e} 000000 000 000

0000 0000 Q0000000 00000e [e]
00000000000 0000 (o]e]

Beispiel: Token richtig zahlen
m PO hat Token geschickt, wird rot, speichert:
ng = 0, senty = 1, receivedy = 0, sendet Marker.
m P1 leitet Token weiter, erhalt Marker, wird rot,
speichert: n; = 0, sent; = 1, received; = 1,

@0 1) sendet Marker.
ONEG m P2 leitet Token weiter, erhidlt Marker, wird rot,

speichert: n, = 0, sent; = 1, received; = 1,
sendet Marker.

m PO erhalt Token, erhalt dann den Marker.
Algorithmus abgeschlossen.

(no+n1+)+ (senty—receivedy)+(sent; — received;)+ (sent, — received,) = 1

(7)
Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation

Representation Richtigkeit Zustand Abschluss
o] [e]e]e} 000000 000 000
0000 0000 Q0000000 000000 [e]
00000000000 0000 [1e]

Abschluss feststellen: Dijkstra-Scholten

m Initiator sendet Signal an alle Verbundenen.

m Empfanger sendet Signal an alle Folgenden, sendet Ack, wenn
m Berechnung terminiert, und
m alle Folgenden Ack geschickt haben

m Wenn Initiator so viele Acks wie Signale erhalten hat, ist die
Berechnung terminiert.

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand Abschluss
o] [e]e]e} 000000 000 000
0000 0000 Q0000000 Q00000 o]
000000000000 000 oe
Zusammenfassung
m Token zahlen ist nicht-trivial
m Konsistente Schnitte missen alle logisch fritheren Daten
enthalten
m Chandy-Lamport sendet Farbmarker
m Broadcast
m Abschluss feststellen: Dijkstra-Scholten
Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Einstieg Motivation Representation Richtigkeit Zustand

o felele) 000000 000 000

0000 0000 Q0000000 000000
000000000000 000 00

Auf dass Sie furchtlos Garantien geben kénnen!

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Abschluss
.

Werkzeuge Literatur
©00000000
0000

Notation fiir Daten

define-record-type <message>
message a b ¢ ;; Konstruktor
message? ;; Test
a message-a ;; Getter
b message-b
C message-c

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge

0000000
00000

oe
Q0
Q0
[e]e]e}

Literatur

copy-paste Programme

Kopierbare Versionen der Programmschnipsel.

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge
00@000000
9000000

00
ele]

Through-to-4

define : through-to-4

___ define x O

_ while-any

_______ X < 4
___________ set! x x + 1

___________ display x

_______ IX = 3!

___________ set! x O

___________ display x
_ newline

Folie

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Literatur

Werkzeuge
000@00000
9000000

Q0
60

atomic

define : atomic-switch
___ define a #t
___ define flag #f

_ while-any

_______ a

___________ set! flag #t
___________ set! flag #f
_______ : and flag a

___________ set! a #f

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Literatur

Werkzeuge

Literatur
QQO00000

Euclidean

define : euclidean a b
_ while-any

________ {a < B} : set! b {b - al}
________ {b < a}f : set! a {a - b}
___values a b

Folie

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge

000008000
QQO00000

o]
(e]e]

Literatur

[ole!

Fairness

define : fair
_ define b #t
_ define x #f
while-any
_____ b : set! x #t
b : set! x #f
x : set! b #f
X set! x : not x

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000800

Q000000

00

felele)

colorme

define : colorme
_ define PO O
_ define P1 O
_ define P2 2
_ define P3 2
___ while-any
_______ : or [{Po = P1}j {lP0 = P2} {PO = P3}
_________ set! PO : modulo !PO + 24 4

_______ {P1 = PO

_________ set! P1 : modulo !Pl + 2@ 4

_______ P2 = PO

_________ set! P2 : modulo [(P2 + 2| 4

_______ {p3 = Po@

_________ set! P3 modulo IP3 + 2@ 4
_ values PO P1 P2 P3

Folie

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000080

9000000

00

ele]

atomic switch

define : atomic-switch
___ define a #t
___ define flag #f

_ while-any
___________ set! flag #t
___________ set! flag #f
_______ : and flag a
___________ set! a #f

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000008

9000000

00

ele]

non-atomic switch

define : nonatomic-switch
___ define a #t
___ define flag #f

_ while-any
_______ a : set! flag #t
_______ a : set! flag #f
_______ : and flag a
_____________ set! a #f

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000000

©000000

[ole}

felele)

while-any/deterministic

define-syntax-rule
while #t
cond guarded
else
break

while-any guarded

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur

choose-any /correct basics

import : ice-9 pretty-print
srfi :1 lists
srfi srfi-9
only (srfi :26) cut
prefix (fibers channels) fibers:
prefix (fibers) fibers:
;; fibers 1.0 and 1.1 compat
false-if-exception
import : fibers internal
false-if-exception
import : fibers scheduler

random-state-from-platform

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge
000000000
00@0000
00

felele)

choose-any /correct (delayed evaluation)

define-

syntax wrap-all-in-lambda

lambda : x
syntax case x (SEPARATOR)

#T

#

(done ...) SEPARATOR
begin (1lst done ...)

(done ...) SEPARATOR (guard action ...) guarded ...

wrap-all-in-lambda

(done ... (cons (lambda() guard) (lambda() action ..

. SEPARATOR guarded ...

_ (guard action ...) guarded ...

wrap-all-in-lambda
((cons (lambda () guard) (lambda() action ...)))

. SEPARATOR guarded ...

Draketo

'O

Verteilte Systeme 3: Algorithmen und Zustand

Literatur

D))

Werkzeuge
000000000
0008000

Literatur
o)
(e]e]

[ole!

choose-any/correct |

define : shuffle items

sort items : A (x y) !(random:uniform) < O.SE

define : choose-any/internal guards

let loop : : guards : shuffle guards
when : not : null? guards

let : : guard : car guards
if ((car guard)) ;; gets and calls the lambda

cdr guard ;; gets and calls the lambda
loop : cdr guards

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge

Literatur
000000000
Q00e000
Q0
[e]e]e}

choose-any/correct

define-syntax-rule choose-any guarded
choose-any/internal

wrap-all-in-lambda guarded

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge
000000000
0000800

Literatur
o)
(e]e]

[ole!

while-any/correct

define : while-any/internal guards
while #t

let loop : : guards : shuffle guards
when : null? guards
break
let : : guard : car guards
if : (car guard) ;; gets and calls the lambda
: cdr guard ;; gets and calls the lambda
loop : cdr guards

define-syntax-rule : while-any guarded ...
while-any/internal

wrap-all-in-lambda guarded ...

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge
000000000
0000080
00

felele)

channel tools |

define-record-type <channel>
channel message-count
channel?

message-count
channel-message-count
channel-message-count-set!

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Literatur

Werkzeuge

Literatur
000000000
Q0000@0
Q0
[e]e]e}

channel tools I

define : send-message-to chan

channel-message-count-set! chan

+ 1 channel-message-count chan

define : receive-message-from chan

channel-message-count-set! chan

+ -1 channel-message-count chan

define : empty? chan

equal? O channel-message-count chan

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur

Phase helpers

define (phase i) : list-ref phases i

define (i+1%3 i) : modulo E(phase i) + 1E 3
define (i+2%3 i) : modulo E(phase i) + 2E 3
define : neighbors i

take : drop phases (max 0 { 1
m1n3N— 1—1.I!+2II
define : random-phase i
inexact->exact : floor : * 3 : random:uniform .

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000000
$300000

[e]e]e}

Zustandsbroadcast Implementierung

/Zustands-Broadcast all-to-all |

define : broadcast init out in

define V init

define W '()

define inqueue '()

pretty-print V

while-any

: not : equal? VW ;; Schritt 1

send-to-all out : lset-difference equal? V W
set! WV
pretty-print W
check-in-has-input!? inqueue in ;; Schritt 2
set! V : apply lset-union equal? V inqueue
set! inqueue '()

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000000
$300000

[e]e]e}

Zustandsbroadcast Implementierung

Zustands-Broadcast all-to-all |l
pretty-print V
pretty-print V
v

define : send-to-all channels value
for-each : cut fibers:put-message <> value
channels
define : receive-from-all channels
map fibers:get-message channels
define-syntax-rule : check-in-has-input!? inqueue in

begin
set! inqueue : receive-from-all in
: A _ : not : every empty? inqueue

define : make-buffered-channel

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000000
$300000

[e]e]e}

Zustandsbroadcast Implementierung

/Zustands-Broadcast all-to-all 11l

define chan-in : fibers:make-channel
define chan-out : fibers:make-channel
fibers:

define N 3
define init-values : map list : iota N
;; connect every channel to every other channel
define out-channels

map (A _ ') : iota N
define in-channels

map (A _ '()) : iota N
let loop : (N N)

when : not : zero? N

for-each

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000000
$300000

[e]e]e}

Zustandsbroadcast Implementierung

/Zustands-Broadcast all-to-all IV
A (n)

let-values : ((chan-in chan-out) (fibers:make-chani
list-set! out-channels EN - 1!
cons chan : list-ref out-channels EN - 1!
list-set! in-channels n
cons chan : list-ref in-channels n
let : (chan (fibers:make-channel))
list-set! in-channels !N - 1!
cons chan : list-ref in-channels EN - 1!
list-set! out-channels n
cons chan : list-ref out-channels n
iota EN - 1!
loop !N - 1!

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000000
$300000

[e]e]e}

Zustandsbroadcast Implementierung

/ustands-Broadcast all-to-all V

fibers:run-fibers
A
map
A (init out in)
fibers:spawn-fiber

A

broadcast init out in

init-values out-channels in-channels
#:drain? #t

Auf strongly connected graph: Jeder Knoten in Richtung der Kanten
(,,in Pfeilrichtung"”) erreichbar.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge

000000000
OgOOOOO

[e]e]e}

Zustandsbroadcast Implementierung

Zustands-Broadcast terminiert

Wertungsfunktion:

Y = (V()7 V1, veuy Vn—la C0,Cly--ny Cm_1)
c Kanalinhalt
V Zustand

In Schritt 1 wachst c.
In Schritt 2 wachst V.

Terminiert, weiBB aber nicht, wann.

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Literatur

Werkzeuge Literatur
000000000

Q000000

fole]

@00

Logikprogrammierung

Automatisierte Beweise durch Riickfiihrung auf bewiesene Axiome

m Minimalableitung:

m {7} x=1 {x=1};
m Trivial m?=(1=1)=true
m {P} skip {P} m {true} x=1 {x =1}
m Variablenersetzung m Ebenso:

m {Q[x + E]} xx== E {Q} m {?} x:= 100 {x=0}

m ? = (100 = 0) = false
m {false} x=1 {x = 1}
Kein Beweis der Terminierung = Safety, nicht Liveness.
Aquivalent zu ,Wenn alle Guards false sind, ist der Zustand richtig"

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge Literatur
000000000

Q000000

fole]

oeo

Pradikatumformung (predicate transformers)

wp(S, false) = false

m S: Programm
m wp(S, Zielzustand) = Bedingung

m Kein Programm kann false erfiillen

wp(while-any, Q) = 3k > 0: Hx(Q) (10)
m k: Schritte
m Hi(Q): Alle Zusténde, die nach k Schritten terminieren.

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

Werkzeuge
000000000
Q000000

fole]
ele]

Beispiel fir Pradikatumformung

define : toss
define x 'egal
choose-any
#t : set! x O
#t : set! x 1

wp(toss,x =0) = false
wp(toss,x = 1) = false
wp(toss,x =0V x=1) = true

Draketo
Verteilte Systeme 3: Algorithmen und Zustand

Literatur

Werkzeuge
000000000
00000

Literatur
o]
o]
¢}

[efele]

Verweise |

Friedman, D. P. und Eastlund, C. (2015). The Little Prover. MIT
Press, ISBN: 978-0262527958.

Ghosh, S. (2015). Distributed Systems - An Algorithmic Approach.
Computer & Information Science. Chapman & Hall/CRC, 2
edition, ISBN: 978-1466552975.

Hellerstein, J. M. und Alvaro, P. (2019). Keeping CALM: when

distributed consistency is easy. CoRR, abs/1901.01930,
http://arxiv.org/abs/1901.01930.

Bilder:

Draketo

Verteilte Systeme 3: Algorithmen und Zustand

https://openlibrary.org/search?isbn=978-0262527958
https://openlibrary.org/search?isbn=978-1466552975
http://arxiv.org/abs/1901.01930

	Einstieg
	

	Motivation
	Representation
	
	Fairness

	Richtigkeit
	
	
	

	Zustand
	
	
	

	Abschluss
	
	

	Anhang
	Werkzeuge
	
	
	Zustandsbroadcast Implementierung
	

	Literatur

