Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Willkommen bei Verteilte Systeme!

Willkommen bei Verteilte Systeme!

Von Datenbanken
liber Webdienste
bis zu p2p und Sensornetzen.

Heute: Koordination — Reihenfolge, Uhren, Konfliktvermeidung.
. Hattest du das schon gesehen?”

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss

o] 0000 [o] [o] [o]
@00 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Wiederholung

Wiederholung: Grundprobleme

m Einstieg: Wie finde ich u Verbr.eitu.ng: Wie
meinen Platz im Netz? vermeide ich
) Flaschenhalse?
iy i
Il] [s
m Suche: Wo gibt es, was m Kommunikation: Wie
ich brauche? flieBen Informationen

durchs Netz?

m Storungsresistenz: Wie skaliert Gewliinschtes besser als
Unerwiinschtes?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren

o] Q000 [}

ceo o} 600000

[e]e] Q000 Q000000
880000000000000000 8800000

Wiederholung

00000000
Q0000000

Gegenseitiger Ausschluss Abschluss
[o]

[o]
8000OOOOOOOOOOOO o]

Wiederholung: Implementierungen

Einstieg Suche
Gnutella WebCache Slow-Start + Keyword-Multicast
Kademlia Suche nach eigener ID xor-Hash-Hierarchie
BitTorrent Tracker-URL Kademlia / Tracker / Web
Freenet Seed-Nodes suchen ID Greedy Hash auf Small World
WebRTC WebRTC Server -

Verteilung Storung
Gnutella Alt+NAlt, Range, Merkle-Tree Heuristik/Credence
Kademlia unterschiedlich -
BitTorrent Torrent Wertung auf Tracker
Freenet Chunk-Tree with Redundancy Propagating Trust
WebRTC - -

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
ooe [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Wiederholung

Organisation: Projekte

m Konkrete Ziele entwerfen
m Planning Poker: 4, 8, 13 oder 20 Stunden.
m online: atomic (Umfragen)
m offline: Handzeichen (Faust = 10)
m Zielnoten nach Zeitschatzung: Ein Wochenende pro Person
m Ziele anpassen:
m 13 Stunden fir eine Person fiir 1,5

m 20 fiir zwei Personen fiir 1,5

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[o] 0000 [o] [o]

000 [0000000000000 0 000000000 00OO000

e0 0000 Q000000000000 00 [¢]
880000000000000000 88000000

Ablauf heute

Ablauf heute

Koordination
m Reihenfolge ist relative

m Timestamps als Losung?
m Uhren im Computer
m Synchronisation von Uhren

m Logische Uhren als Alternative
m total geordneter Multicast
m kausal geordneter Multicast

m Exklusiver Zugriff
m Wahlalgorithmen

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ
Q000
o}

0000
880000000000000000

[o]
000
oe

Ablauf heute

Ziele heute

Logische Uhren Gegenseitiger Ausschluss

[o]
00000000 000000000 00OO000
Q0000000 [¢]

QO
O

Sie verstehen, wie Operationen in einem verteilten System

geordnet werden koénnen

m Sie kennen die Funktionsweise von Uhren in Computern

m Sie kennen Methoden, um Uhren zu synchronisieren

m Sie kennen Alternativen zu synchronisierten Uhren

m Sie kennen Implementierungen fiir wechselseitigen Ausschluss

(mutual exclusion) in verteilten Systemen

m Sie kennen grundlegende Wahlalgorithmen, um Knoten

spezielle Rollen zuzuweisen

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[o]
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] @000 [o] [o]
600 o 00000000000000 0000000000000000 e}
(e]e] 0000 Q000000000000 00 [¢]
0000000000000 0000O 00000000
e]e] (e]¢]
Problem der Reihenfolge
- - N ~
@] P N O
AN\ | database 1 | [database 2 % A
Y -
user 1 / R . \ user 2
e . .
. /
A /
N 2
‘ Update 1is perform ed before update 2 5 | distributed databaselﬁ ‘ Update 2 is perform ed before update 1 B}

m Repliziertes Bankkonto, 2 Rechenzentren (KA, FFM)

m Kunde in KA méchte 100 € einzahlen.

m Banker in FFM mochte 5% Zinsen auf das Konto buchen.
m Beide Transaktionen zeitgleich.

m Werden in das jeweils andere Rechenzentrum repliziert.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] [o] lele) [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Problem der Reihenfolge

Reihenfolge 1

balance = 1000
balance = balance + 100
balance = balance * 1.05

return balance

1155.0
m Sicht aus Rechenzentrum KA.
m Message des Kunden trifft zuerst ein.
m Message des Bankers danach.

m Kontostand: 1'155 €.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] [ele] le) [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Problem der Reihenfolge

Reihenfolge 2

balance = 1000
balance = balance * 1.05
balance = balance + 100

return balance

1150.0
m Sicht aus Rechenzentrum FFM.
m Message des Bankers trifft zuerst ein.
m Message des Kunden danach.

m Kontostand: 1'150 €.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

Abschluss
[} [ele]e]) [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] Q000 Q0000000000000 0 ¢}
880000000000000000 88000000

Problem der Reihenfolge

Das Problem

m Je nach Reihenfolge der Messages anderer Kontostand.
m Solche Inkonsistenzen vermeiden!

m Wie lassen sich die Operationen ordnen?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [] 0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Uhren + Synchronisation

Ziele Uhren + Synchronisation

m Sie kennen die Funktionsweise von Uhren in Computern
m Sie kennen Methoden, um Uhren zu synchronisieren

https://xkecd.com/2867/

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

https://xkcd.com/2867/

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[} Q000 [} [}
000 1<) 00000000000000 ©000000000000000
[e]e] @000 Q0000000000000 0 ¢}
0000000000000 00000 Q0000000
[e]e] [e]e]
Uhren

Uhren

Computer verwenden 2 Arten von Uhren:
m time-of-day clocks
m Gibt aktuelles Datum und Uhrzeit zuriick.
m Beispiel: Java System.curentTimeMillis()
m monotonic clocks
m Geben eine Zahl zuriick die monoton steigt.
m Beispiel: Java System.nanoTime ()

monoton: l3uft nie riickwdrts.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ

[} Q000

600 o}

[e]e] [o] lele]
0000000000000 00000
[e]e]

Uhren

Hardware Uhren

Logische Uhren Gegenseitiger Ausschluss

[o]
00000000 000000000 00OO000
Q0000000 [¢]

000
000
000
000
QO

m Bestehen aus einem Quartz und 2 Registern.

m Der Quartz oszilliert in einer bestimmten Frequenz.

counter-Register wird bei jeder Oszillation dekrementiert.

Erreicht der Zahler 0, wird ein Interrupt abgesetzt.

m Danach wird das counter-Register auf den Wert des
holding-Registers gesetzt.

Jeder Interrupt stellt einen tick dar.

m Die Software Uhr wird pro tick um 1 erhoht.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[o]
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o]
000 o] 0000000000000 0 000000000 00OO000 o]
(e]e] [ele] le) Q000000000000 00 [¢]

880000000000000000 88000000

Uhren

Der internen Uhr vertrauen? Erfahrung

Kerberos
m “login failed: timed out after 5 minutes.”
m log: password received 17442000 minutes after login.
m epoch ... (1970)
Admins mussten lokal an den Rechner und die Mainboard-Batterie
tauschen.
Ist ein Extremfall. Mikrowelle: Etwa +1 Minute pro Monat.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ
o 0000
000 9]

(e]e] oooe
880000000000000000

Uhren

Logische Uhren Gegenseitiger Ausschluss

[o]
00000000 000000000 00OO000
Q0000000 [¢]

000
000
000
000
QO

Clock Skew vs. Clock Drift

Wir vergleichen 2 Uhren:

m Clock Skew: Unterschied der Werte der Uhren

m Clock Drift: Unterschied zwischen der Frequenzen der Uhren

m Clock Skew != 0 = Uhren sind nicht synchronisiert sind

m Clock Drift |= 0 = Clock Skew wird sich verandern
m Clock Skew zu UTC ca. 31 Sekunden pro Jahr

m Ursache: Unterschiede in der Frequenz des Quartz (auch bei

baugleichen Uhren)

m Externe Einfliisse wie Temperatur

m = Wir miissen Synchronisieren!

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[o]

o]

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[o] 0000 [o] [o]

000 [0000000000000 0 000000000 00OO000

(e]e] 0000 Q000000000000 00 [¢]
880000000000000000 88000000

Synchronisation

Zeit-Synchronisation

Es existieren verschiedene Algorithmen:
m Cristians Algorithmus: Client-Server
m NTP: Weltzeit

m Berkeley: Clusterzeit

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss
[} Q000 [}
600 o} o}
[e]e] QOO Q
[}
O

[o]
o 0000000 8000OOOOOOOOOOOO
880000000000000000

000000
000000000000 00
8000OOO

Synchronisation

Cristians Algorithmus

Cristians Algorithmus

T T T T T
50 100 200 250

e - -

m P fragt Zeit von S an und startet timer.
m S liest die Zeit t und antwortet.

m P setzt seine Uhr auf t + @
Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ
[o] 0000
500 o}

(e]e] Q000
88.000000000000000

Synchronisation

PAUSE

--— PAUSE —--

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Logische Uhren Gegenseitiger Ausschluss
[}

00000000000000 6000000000000000
Q0000000000000 0 ¢}

88000000

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] Q000 Q000000000000 00 [¢]

880.00000000000000 88000000

Synchronisation

Ubung Cristians Algorithmus

m Laufzeit Nachricht P — S und S — P jeweils 100 ms.
m S benétigt 10 ms fiir die Bearbeitung der Anfrage.

m t = 500 ms.

m Welche Zeit wird bei P eingestellt?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

Abschluss
[} Q000 [} [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] [e]e]e]e] Q0000000000000 0 ¢}
8800.0000000000000 88000000

Synchronisation

NTP (Network Time Protocol): Diagramm

Stratum 0

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] Q000 Q000000000000 00 [¢]

88000.000000000000 88000000

Synchronisation

NTP (Network Time Protocol): Ablauf

Stratum 0

Stratum 1 J

Y

: ‘
‘ ‘tratélmZ
Gored

m Bestandteile des Systems werden in Strata unterteilt.

Referenz-Uhren befinden sich in Stratum O.

m Ein Server in Stratum n kontaktiert Server in Stratum n - 1 zur
Synchronisation.

m Oft werden mehrere Server angefragt und die Ergebnisse
statistisch behandelt (Mittel, AusreiBer).

= ANiirh tnnavhalkh Alnac CQrvatiime wnivd LAammioni=ziace
Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] Q000 Q000000000000 00 [¢]

880000.00000000000 88000000

Synchronisation

NTP Berechnung

m Client startet Anfrage zu ty.

NTP m Server empfangt Anfrage zu
' t1 und sendet Anwort zu t».
m Client empfangt Antwort zu

t3.
. . ! . ! m fp und t3 jeweils in
i€ e . CIient—Zei_t, t; und t in
Server-Zeit.
° ° m Offset berechnet sich:
0 ! <0 75 ! 125 h offset = w

m Offset wird verwendet, um
die Zeit graduell anzupassen.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] Q000 Q000000000000 00 [¢]

8800000.0000000000 88000000

Synchronisation

NTP graduelle Anpassung

m Was passiert bei offset < 07
m Uhren sollten nicht riickwarts laufen!
m Bsp: jeder tick erhéht Software Uhr um 10 ms.

m ldee: Verringerung des Inkrements, um Uhr schrittweise
anzugleichen.

m Wird auch verwendet, um die Uhr vorwarts anzupassen.

m Graduelle Anpassung wird bei offsets > 128 ms nicht
verwendet.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

Abschluss
[} Q000 [} [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] [e]e]e]e] Q0000000000000 0 ¢}
88000000.000000000 88000000

Synchronisation

Niemals riickwarts! Erfahrung

m change password.

m error: attempt to login before password set.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] Q000 Q000000000000 00 [¢]

880000000.00000000 88000000

Synchronisation

NTP Ubung

m Client stellt Anfrage bei t; = 100 ms.

m Server empfangt Anfrage bei t; = 50 ms und benétigt 10 ms
zur Bearbeitung.
m Berechne das offset bei:
mtc_>s=ts >c=5ms
B tc_>s=>b5msund ts_~c = 10ms

m Auf welche Zeit wird die Uhr des Client jeweils gestellt?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] Q000 Q000000000000 00 [¢]

8800000000.0000000 88000000

Synchronisation

NTP

Neben dem offset wird noch das delay berechnet:
delay = (t3 — to) — (t2 — t1)

Es werden 8 offset-delay Paare ermittelt und das Paar mit dem
geringsten delay verwendet.

NTP erreicht Genauigkeiten von 1-50 ms.

30ms Verzégerung ist die Obergrenze fiir Interaktives!

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

Abschluss
[} Q000 [} [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] [e]e]e]e] Q0000000000000 0 ¢}
88000000000.000000 88000000

Synchronisation

Berkeley Algorithmus - Schritt 1

Zeitserver sendet periodisch eigene Zeit an alle Maschinen im
Netzwerk.

<~
_) 2300
time _ -
daemon
23:00

(4 A |
node 1 node 2
22:50 23:25

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ
[} Q000

000 o)

[e]e] QOO

Q
880000000000.00000

Synchronisation

Logische Uhren Gegenseitiger Ausschluss
[} [}

00000000000000 6000000000000000
Q0000000000000 0 ¢}

88000000

Berkeley Algorithmus - Schritt 2

Maschinen antworten mit ihrem offset.

node 1
22:50

o
time: -
daemon
23:00
A 3
i \
'o-10 ‘o425
! A
i)
node 2
23:25

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ

[o] 0000

000 [

(e]e] Q000
8800000000000.0000

Synchronisation

Logische Uhren

Gegenseitiger Ausschluss Abschluss
[} [}
00000000000000 6000000000000000 e}
Q0000000000000 0 ¢}
88000000

Berkeley Algorithmus - Schritt 3

Zeitserver berechnet Durchschnitt der Uhrzeiten und sendet offsets

an Maschinen.

< ~.
) O+5
time: -
daemon
23:05
T
i’ \
i v
y0+15 \0-20
’ \
v h |
node 1 node 2
23:05 23:05

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ
[} Q000
000 o)

(e]e] Q000
88000000000000.000

Synchronisation

Logische Uhren Gegenseitiger Ausschluss
[} [}

00000000000000 6000000000000000
Q0000000000000 0 ¢}

88000000

Berkeley Algorithmus - Ubung

3 Rechner und ein Server im System.

Abschluss
[}
e}

Gebe die Nachrichten des Berkley Algorithmus an. Welche Zeit wird

im System eingestellt?

Server 11:00

Alice 10:55

Bob 11:15

Carol 11:10
Nr von an Inhalt
1 Server AB,C 11:00
2 Server Server 0
9

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

Abschluss
[} Q000 [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] [e]e]e]e] Q0000000000000 0 ¢}
880000000000000.00 88000000

Synchronisation

Berkeley Algorithmus - Beobachtungen

m Bietet interne Synchronisation.
m System wird nicht mit externer Uhr (UTC) synchronisiert.

m Solange das System intern einen einheitlichen Zeitbegriff
verwendet, kdnnen Operationen geordnet werden.

Clusterzeit.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] [ele]e] [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] Q000 Q000000000000 00 [¢]

8800000000000000.0 88000000

Synchronisation

Spanner

m Nutzt timestamps in der Form [Tioper Tupper]1
m . True Time Service"
m Kommt auf 6ms Genauigkeit

m Transaktionen werden verzégert, damit T,ppe- auf jeden Fall
verstrichen ist.

1 .
Spanner-Beschreibung: nttps://1evelup.gitconnected. con/
how-google-spanner-assigns-commit-timestamps-the-secret-sauce-of-its-strong-consistency-8bc143614£26

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

https://levelup.gitconnected.com/how-google-spanner-assigns-commit-timestamps-the-secret-sauce-of-its-strong-consistency-8bc143614f26
https://levelup.gitconnected.com/how-google-spanner-assigns-commit-timestamps-the-secret-sauce-of-its-strong-consistency-8bc143614f26

Einstieg Reihenfolge ist relativ
[} Q000
000 o)

(e]e] Q000
88000000000000000.

Synchronisation

Wall Time Timestamps

Logische Uhren Gegenseitiger Ausschluss
[} [}

00000000000000 6000000000000000
Q0000000000000 0 ¢}

88000000

- Fazit

m Uhren sind immer mit einem Fehler versehen.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

ggOOOOOOOOOOOOOOOO 88000000

Zusammenfassung Uhren + Synchronisation

Zusammenfassung Uhren + Synchronisation

m wall time vs. monotonic clocks
m Uhren leiden under skew und drift.

m —> miissen synchronisiert werden.

externe Synchronisation: Cristians Algorithmus, NTP

interne Synchronisation: Berkeley

m Uhren haben Unsicherheit

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] Q000 Q0000000000000 0 ¢}
8QOOOOOOOOOOOOOOOO 88000000

Zusammenfassung Uhren + Synchronisation

PAUSE

--— PAUSE —--

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
800 Q000 [}

[]

[[}

(e]e] 0000 Q
[e]o]e] 8

[o]
0000000 8000OOOOOOOOOOOO o]
83 00000000000 0000

000000
000000000000 00
8000OOO

Logische Uhren

Logische Uhren + Multicast ordnen

Ziele:
m Sie kennen Alternativen zu wall time clocks.

m Sie verstehen den Unterschied zwischen partieller und totaler
Ordnung.

m Sie verstehen Lamport clocks.

m Sie kennen total geordneten Multicast mit Lamport clocks.

Sie verstehen Vector clocks.

m Sie kennen kausal geordneten Multicast mit vector clocks.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 0000000000000 00 [¢]

880000000000000000 88000000

Lamport Uhren

Lamport Uhren

m Die exakte Uhrzeit interessiert uns nicht

m Reihenfolge von Ereignissen

m = Zeit-Ordnung

m Timestamps sollen Kausalitat beriicksichtigen:

m Wenn a kausal vor b passiert ist, dann
timestamp(a) < timestamp(b).

m Tir wird geoffnet bevor man eintritt
= dann ist timestamp(Schritt) > timestamp(éffnen)

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 o] [}
600 o} e}
[e]e] Q000 Q

880000000000000000 8

[o]
0000000000000 000000000 00OO000 o]
000000000000 00 [¢]

8000OOO

Lamport Uhren

Die Happens-Before Relation

m Logische Beziehung zwischen 2 Ereignissen.
m Notation: a — b: a ist vor b passiert.
m Regeln:
m Innerhalb eines Prozesses a — b, if time(a) < time(b).

m Wenn P1 eine Nachricht m an P2 sendet:
send(m) — receive(m).

m Wenn a — b und b — ¢, dann auch a — ¢ (Transitivitat)

m Partielle Ordnung von Ereignissen.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [O0@00000000000 000000000 00OO000 o]
(e]e] 0000 0000000000000 00 [¢]

880000000000000000 88000000

Lamport Uhren

Partielle Ordnung

m Eine totale Ordnung erlaubt 2 beliebige Elemente miteinander
zu vergleichen.

m Fir jedes Elementpaar kann die Aussage getroffen werden
welches der Elemente groBer ist.

m Beispiel: natiirliche Zahlen.

m Eine Partiellen Ordnung kann nur einige vergleichen

m = Wir kénnen nicht fiir alle Ereignisspaare die Reihenfolge
bestimmen.

Gleichzeitig: , echte” Reihenfolge unbekannt.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0008000000000 0 000000000 00OO000 o]
(e]e] 0000 0000000000000 00 [¢]

880000000000000000 88000000

Lamport Uhren

Umsetzung Lamport Clocks

Jeder Prozess P; erstellt einen lokalen Zahler C; und wendet
folgende Regeln an:

m Fiir 2 sukzessive Ereignisse, die in P; stattfinden, wird C; um
1 erhoht.

m Wenn eine Nachricht von P; gesendet wird, erhalt sie den
timestamp ts(m) = C;.

m Wenn eine Nachricht von P; empfangen wird, setzt P; C; auf
max(Cj,ts(m)) + 1

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ

[} Q000

600 o}

[e]e] Q000
880000000000000000

Lamport Uhren

Beispiel Lamport Clocks

Logische Uhren Gegenseitiger Ausschluss
o] [}

0000@000000000 6000000000000000
Q0000000000000 0 ¢}

88000000

Lamport Clocks

@

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}

o]

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} [ole]e] o] [}
000 o 00000@00000000 0000000000000000 e}
[e]e] Q000 Q0000000000000 0 ¢}
880000000000000000 88000000

Lamport Uhren

Lamport Clocks - Schritt 1

Lamport Clocks

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} [ole]e] o] [}
000 o 000000@0000000 0000000000000000 e}
[e]e] Q000 Q0000000000000 0 ¢}
880000000000000000 88000000

Lamport Uhren

Lamport Clocks - Schritt 2

Lamport Clocks

IR

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} [ole]e] o] [}
000 00000008000000 0000000000000000 e}
[e]e] Q000 Q0000000000000 0 ¢}

0000000000000 00000 Q0000000

[e]e] [e]e]
Lamport Uhren

Lamport Clocks

IR

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} [ole]e] o] [}
000 0000000000000 0000000000000000 e}
[e]e] Q000 Q0000000000000 0 ¢}

0000000000000 00000 Q0000000

[e]e] [e]e]
Lamport Uhren

Lamport Clocks

IR

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ

[}

600 o}

[e]e] Q000
880000000000000000

Lamport Uhren

Lamport Clocks - Ende

Uhren Gegenseitiger Ausschluss

8000OOOOOOOOOOOO

Lamport Clocks

IR

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000800 0 000000000 00OO000 o]
(e]e] 0000 0000000000000 00 [¢]

880000000000000000 88000000

Lamport Uhren

Lamport Clocks

m Ein Paar von gleichzeitigen (concurrent) Ereignissen hat keinen
kausalen Pfad.

m Lamport timestamps miissen bei gleichzeitigen Ereignissen
weder geordnet noch ungleich sein.

m A— B = ts(A) < ts(B) aber
m ts(A) < ts(B) = {A — B} OR {A, B gleichzeitig}

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000080 000000000 00OO000 o]
(e]e] 0000 0000000000000 00 [¢]

880000000000000000 88000000

Lamport Uhren

Lamport Clocks - Ubung

Lamport Clocks

=

@
B
8
&
&

m Besteht ein kausaler Zusammenhang zwischen:
mAJ
m G K
mCF

m Berechne die timestamps.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren

Gegenseitiger Ausschluss Abschluss
[o] 0000 [o] [o]
600 o 0000000000008 0000000000000000 e}
(e]e] 0000 0000000000000 00 [¢]
880000000000000000 88000000

Lamport Uhren

Lamport Clocks, Bedeutung

m A— B = ts(A) < ts(B) aber
m ts(A) < ts(B) = {A — B} OR {A, B gleichzeitig}
,Wenn es vorher war, dann ist der Zeitstempel kleiner.”
= Lamport-Uhren bilden den Ereigniszeiten ab.
Aber nicht: ,War die Tiir offen, als ich eingetreten bin?"

Auch nicht: ,Hattest du hier meine Nachricht schon gesehen?"

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 e 000000000 00OO000 o]
(e]e] 0000 0000000000000 00 [¢]

880000000000000000 88000000

Lamport Uhren

Lamport: Wann reicht das nicht?

JMawN n
g: : @;“/”\1\ : g: o/ fﬁmjm :\\
5 o\ SaxERENE
m i B ‘@:::::::‘@;

Das Ziel ist nicht, die Wirklichkeit abzubilden, sondern eine
Datengrundlage fiir lokale Entscheidungen zu haben.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 ®00000000000000 [¢]

880000000000000000 88000000

Vektor Uhren

Vektor Uhren - Motivation

Lamport Uhren:
m A— B = ts(A) < ts(B) aber
m ts(A) < ts(B) = {A — B} OR {A, B gleichzeitig}
m ts(A) <ts(B) = NOT {B — A}
Die Tiir ging nicht erst auf, nachdem ich durchgegangen bin.

Gibt es ein Verfahren, das ts(A) < ts(B) = A — B ermoglicht?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 0O®0000000000000 [¢]

880000000000000000 88000000

Vektor Uhren

Vektor Uhren - Umsetzung

m Jeder Prozess verwaltet einen Vektor von Integer Uhren.
m Bei N Prozesse hat jeder Vektor N Elemente.

m Ein Prozess i verwaltet einen Vektor V;[0...(N-1)]

m V;[i] ist die lokale Uhr des Prozesses i.

m Falls V;[j]=k, weiB i, dass k Ereignisse in P; stattgefunden
haben.

m In jedem Knoten 0(N) — Wir hatten gerne 0(log(N))

(haben wir aber nicht).

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 00@000000000000 [¢]

880000000000000000 88000000

Vektor Uhren

Vektor Uhren - Verwaltung

m Vor Ausfiihrung eines lokalen Ereignisses fiihrt P; die
Anweisung V;[i] += 1 aus.

m Wenn P; eine Nachricht sendet, wird der timestamp der
Nachricht auf V; gesetzt, nachdem V;[i] +=1 ausgefiihrt
wurde.

m Beim Empfang einer Nachricht in P;:
m V[]+=1
m Vi[j] = max(Vi[j], Vili]), forj # i

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ
[} Q000

600 o}

[e]e] QOO

Q
880000000000000000

Vektor Uhren

Logische Uhren Gegenseitiger Ausschluss
[} [}

00000000000000 6000000000000000
0000000000000 00 ¢}

88000000

Vektor Uhren - Beispiel 1

Vector Clocks
P/
A
2
5 ' W'D ‘\.5 Z'U 2'5 3.0 3'5 4'0 4.5 5'0 5'5 6.0 6’5 7'0 7.5 8'0 3'5

Selbe Ausgangssituation wie bei Lamport Clocks.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[} Q000 [} [}

600 o} 00000000000000 6000000000000000

[e]e] Q000 0000@0000000000 ¢}
880000000000000000 88000000

Vektor Uhren

Vektor Uhren - Beispiel 2

Vector Clocks

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[} [ole]e] [} [}

600 o} 00000000000000 6000000000000000

[e]e] Q000 00000e000000000 ¢}
880000000000000000 88000000

Vektor Uhren

Vektor Uhren - Beispiel 3

Vector Clocks

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[} [ole]e] [} [}

600 o} 00000000000000 6000000000000000

[e]e] Q000 000000@00000000 ¢}
880000000000000000 88000000

Vektor Uhren

Vektor Uhren - Beispiel 4

Vector Clocks

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss
[} Q000 [} [}
600 o 00000000000000 0000000000000000
[e]e] Q000 0000000 e0000000 ¢}

0000000000000 00000 00000000

[e]e] [e]e]
Vektor Uhren

Vector Clocks

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss
[} Q000 [} [}
600 o 0000000000000 0000000000000000
[e]e] Q000 00000000 e000000 ¢}

0000000000000 00000 00000000

[e]e] [e]e]
Vektor Uhren

Vector Clocks

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [}
600 o} o}
[e]e] Q000 [}

880000000000000000 8

[o]
0000000000000 000000000 00OO000 o]
00000000 e00000 [¢]

8000OOO

Vektor Uhren

Vektor Uhren - kausale Abhangigkeit

Ereignis B hangt vielleicht kausal von A ab, wenn ts(A) < ts(B).
ts(A) < ts(B):
m fir alle i: ts(A)[i] < ts(B)[i] und
m es existiert mindestens ein Index k fiir den: ts(A)[k] < ts(B)[k]
gilt.
In diesem Fall gilt:
m A geht B kausal voraus.

m B hangt vielleicht kausal von A ab, da es Informationen von A
geben konnte, die in B propagiert werden.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] Q000 000000000 0e0000 ¢}
880000000000000000 88000000

Vektor Uhren - Beispiel: Lob oder Hame?

Gratulation Hame

Alice,/

Gewonnen! i

f\ : - \‘szu,um
- nt) - :

Foult

.lsil.U.U;U ;;:D,D,l‘_ :

xls:l,U,U‘:U\é:O,O,l\éS:] 2 u:
m
B3 B 3 K '

ECREER,

0 10 15 20 E3 0 E3 0 0 10 15 2

Wir sehen die Kausalen Zusammenhange durch die Zeitstempel.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ
[} Q000

600 o}

[e]e] Q000

880000000000000000

Vektor Uhren

Vektor Uhren - Ubung

Logische Uhren Gegenseitiger Ausschluss
[} [}

00000000000000 6000000000000000
00000000000 e000 ¢}

88000000

m Berechne die timestamps.

m Hangt J vielleicht kausal von A ab?

m Finden C und F gleichzeitig statt?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Vector Clocks
%
L) .
-
a ' 1'0 1:.5 Ziﬂ 2'5 3.0 iiS 4'0 4.5 S'D 5'5 5:.0 5’5 7'0 7.5 R'D 555

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [}
600 o} o}
[e]e] Q000 [}

880000000000000000 8

[o]
0000000000000 000000000 00OO000 o]
0000000000 0e00 [¢]

8000OOO

Vektor Uhren

Vektor Uhren, Bedeutung

Vector Clocks:
mts(A) <ts(B) = A— B
m —(ts(A) < ts(B)) A =(ts(B) < ts(A)) = A, B gleichzeitig

Wenn der Zeitstempel kleiner ist, dann war es vorher.”

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss

[} Q000 [} [}

600 o} o}

[e]e] Q000 [}
880000000000000000 8

[o]
000000000000 000000000 00OO000 o]
0000000000080 [¢]

[e]e]e]e]e]e}

Vektor Uhren

Vektor Uhren - Abschluss

Lamport Clocks:

m A— B = ts(A) < ts(B) aber

m ts(A) < ts(B) = {A — B} OR {A, B gleichzeitig}
Vector Clocks:

mts(A) <ts(B) = A—B

m —(ts(A) < ts(B)) A —=(ts(B) < ts(A)) = A, B gleichzeitig

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg
[}

600
[e]e]

Vektor Uhren

PAUSE

Reihenfolge ist relativ
8000

0000
880000000000000000

PAUSE ---

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Logische Uhren Gegenseitiger Ausschluss
[} [}

00000000000000 6000000000000000
0000000000000 0e ¢}

88000000

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
800 Q000 [}

[o]

[o]

(e]e] [e]o]e} o]
[]

[¢]

[o]
o 0000000 8000OOOOOOOOOOOO o]
880000000000000000

000000
Q0000000000000
SOOOOOO

Kausal geordneter Multicast

Kausal geordneter Multicast

m Vollstandig geordneter Multicast stellt sicher, dass alle
Nachrichten in gleicher Reihenfolge bearbeitet werden.

m Kausal geordnet bedeutet, dass Nachrichten, die sich
gegenseitig beeinflussen kdnnten von allen Prozessen in gleicher
Reihenfolge empfangen werden.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Kausal geordneter Multicast

Kausal geordneter Multicast mit Vector Clocks

Mit wenigen Anderungen kénnen Vector Clocks genutzt werden, um
kausal geordnete Nachrichten sicherzustellen.

Folgendes Beispiel:
m Ein Bulletin Board Service.
m Benutzer treten Gruppen bei.

m Posts werden an alle Gruppenmitglieder gemulticastet.
m Konnte vollstandig geordneten Multicast verwenden.

m Wird aber nicht benétigt.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
200 :

[o]
o]
(e]e] [e]o]e} Q
[e]
[¢]

[o]
o 0000000 8000OOOOOOOOOOOO o]
880000000000000000

000000
Q0000000000000
8.00000

Kausal geordneter Multicast

Bulletin Board - Anzeige

Betreff

Mach

Microkernels

Hurd; was: Microkernels

RPC Performance
Re: Mach

m Bei vollstandiger Ordnung ist diese Liste bei jedem Benutzer in
der gleichen Reihenfolge.

m Kausal geordneter Multicast erfordert nur, dass Reaktionen (Re:
Mach) nach dem Post (Mach) angezeigt werden.

m Fiir die angezeigten Posts sind verschiedene Reihenfolgen
moglich.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] Q000 Q000000 Q0000000 ¢}
880000000000000000 880.0000

Kausal geordneter Multicast

Kausal geordneter Multicast - Anpassungen
m Vector Clocks werden nur bei Empfang oder Senden einer
Nachricht angepasst.
m Beim Senden in P Vi[i] +=1

m Beim Empfang von m in P;: fir alle k:
Vilk] = max(V;[k], Vin[K])
m Eine Nachricht m (von Py an P;) wird erst von der Anwendung
prozessiert wenn:

m V,[k] = Vi[k] + 1, m ist die nachste Nachricht, die P_{i} von
P_{k} erwartet hat.

m V[x] < Vi[x] fiir alle x # k, P; hat alle Nachrichten gesehen,
die Py gesehen hat als m gesendet wurde.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] Q000 Q000000 Q0000000 ¢}
880000000000000000 8800.000

Kausal geordneter Multicast

Kausal geordneter Multicast - Beispiel 1

Kausal geordneter Multicast

GPosta

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] Q000 Q000000 Q0000000 ¢}
880000000000000000 88000.00

Kausal geordneter Multicast

Kausal geordneter Multicast - Beispiel 2

Kausal geordneter Multicast

CPosta
R

Ny

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000 00OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 880000.0

Kausal geordneter Multicast
Kausal geordneter Multicast - Beispiel 3

Kausal geordneter Multicast

—

K recv /-

Was passiert bei verzogerter Zustellung?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} Q000 [} [} [}
600 o} 00000000000000 6000000000000000 e}
[e]e] Q000 Q0000000000000 0 ¢}
880000000000000000 8800000.

Kausal geordneter Multicast

Kausal geordneter Multicast - Beispiel 4

Kausal geordneter Multicast

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss
800 Q000

[o]

[o]

(e]e] [e]o]e} Q
o]

°

[o]
o 0000000 8000OOOOOOOOOOOO
880000000000000000

000000
000000000000 00
8000OOO

Zusammenfassung Logische Uhren

Zusammenfassung Logische Uhren

m happens before Relation bestimmt eine partielle Ordnung.
m Lamport Clocks: Counter pro Prozess

m Timestamps bilden totale Ordnung.

m Vergleich von timestamps gibt keine Aussage zu Kausalitat.

m Total geordneter Multicast kann mit Lamport Clocks
implementiert werden.

m Vector Clocks: Vector of Counter pro Prozess
m Vergleich von timestamps gibt Aussage zu Kausalitat.

m Kausal geordneter Multicast kann mit vector clocks
implementiert werden.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ
[} Q000
600 o}

(e]e] 0000
880000000000000000

Zusammenfassung Logische Uhren

PAUSE

--— PAUSE —--

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Logische Uhren Gegenseitiger Ausschluss

[o]

0000000000000 0 000000000 00OO000
Q000000000000 00 [¢]

8gOOOOOO

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] []
000 [0000000000000 0 00000000 000OO000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Gegenseitiger Ausschluss

Ziele:

m Sie kennen die Grundlegenden Konzepte fiir Gegenseitigen
Ausschluss.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] o]
000 [0000000000000 0 000000000000 0000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Gegenseitiger Ausschluss

Das Problem: Einige Prozesse in einem verteilten System mochten
exklusiven Zugriff auf eine Ressource.

2 Vorgehensweisen:

m Berechtigungsbasiert: Prozesse benétigen Berechtigung anderer
Prozesse um auf Ressource zuzugreifen.

m Tokenbasiert: Einzigartiges Token wird zwischen Prozessen
weitergereicht. Wer das Token hélt, hat Zugriff auf die
Ressource.?

2Token-Basiert bis hin zu Funktionsargumenten:
https://fosdem.org/2022/schedule/event/spritelygoblins/
Arne Babenhauserheide

Verteilte Systeme 2: Koordination

https://fosdem.org/2022/schedule/event/spritelygoblins/

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 O@000000000O0000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Zentralisierter Algorithmus

m Simuliert Vorgehen innerhalb einer CPU.
m Ein Prozess wird als Koordinator konfiguriert.

m Prozesse, die auf die Ressource zugreifen mochten, fragen dies
beim Koordinator an.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 008000000000 0000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Zentralisierter Algorithmus - Happy Path

Queue = []

Coordinator

Falls die Ressource verfligbar ist, erhalt der anfragende Prozess die
Berechtigung.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 [e]e]e] lelelelelele]e]lelelo]e]e] o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Zentralisierter Algorithmus - Ressource belegt

Queue = [P2]

Coordinator

m Koordinator hat Ubersicht, ob Ressource momentan frei ist.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 [e]e]e]e] lelelelele]elelelo]e]e] o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Zentralisierter Algorithmus - Ressource belegt

Queue = [P2]

Coordinator

m Koordinator hat Ubersicht, ob Ressource momentan frei ist.

m Hier wird die Antwort an den anfragenden Prozess verzogert,
bis die Ressource wieder frei wird.

P2 wird dadurch geblockt.

m Der Koordinator speichert die Anfrage in einer Queue.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[o] 0000 [o] [o]

000 [0000000000000 0 [e]e]e]e]e] lelelelelelelele]e]e]

(e]e] 0000 Q000000000000 00 [¢]
880000000000000000 88000000

Gegenseitiger Ausschluss

Zentralisierter Algorithmus - Ressource wird frei

release /OK

Coordinator

Sobald die Ressource wieder frei wird, gibt der Koordinator die
Ressource an den ersten Prozess in der Queue.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[o] 0000 [o] [o]

000 [0000000000000 0 0000000000000 00

(e]e] 0000 Q000000000000 00 [¢]
880000000000000000 88000000

Gegenseitiger Ausschluss

Zentralisierter Algorithmus - Fragen

m Wieviele Nachrichten werden ausgetauscht?
|

m Was passiert, wenn der Koordinator ausfallt?
|

m Was passiert bei vielen Anfragen?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ
[} Q000
600 o}

(e]e] 0000
880000000000000000

Gegenseitiger Ausschluss

Logische Uhren Gegenseitiger Ausschluss

[o]
00000000 0000000000000 00
Q0000000 [¢]

00000

0000
000
000
000
000
QO

Zentralisierter Algorithmus - Bewertung

m Wieviele Nachrichten werden ausgetauscht?

m 3 Messages pro lock

m Was passiert, wenn der Koordinator ausfallt?

m System funktioniert nicht mehr

m Was passiert bei vielen Anfragen?

m Koordinator ist Flaschenhals

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[o]
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000008000 0000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Verteilter Algorithmus

m Wenn ein Prozess, die Ressource benétigt sendet er eine
Nachricht an alle Prozesse (auch sich selbst).

m Bei Erhalt so einer Nachricht:
m Prozess halt Ressource nicht und mdchte sie nicht: sendet OK.
m Prozess halt Ressource: antwortet nicht.

m Prozess mdchte Ressource: vergleiche timestamp der Nachricht
mit timestamp der eigenen Nachricht. Der niedrigere timestamp
gewinnt.

m Prozess wartet Antworten aller Prozesse ab. Sobald er
samtliche OKs erhalten hat, verwendet er die Ressource.

Voraussetzung: Totale Ordnung der Nachrichten.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000800 0000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Verteilter Algorithmus - Gleichzeitiger Zugriff

m PO sendet Anfragen mit timestamp 8.

m P2 sendet Anfragen mit timestamp 12.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[o] 0000 [o] [o]

000 [0000000000000 0 0000000000000 00

(e]e] 0000 Q000000000000 00 [¢]
880000000000000000 88000000

Gegenseitiger Ausschluss

Verteilter Algorithmus - Gleichzeitiger Zugriff 2

m P1 sendet OK an beide Prozesse.
m PO und P2 vergleichen timestamps.
m P2 sendet OK.
m PO stellt P2s Anfrage in einer Queue ein.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss

[o] 0000 [o] [o]

000 [0000000000000 0 0000000000000 00

(e]e] 0000 Q000000000000 00 [¢]
880000000000000000 88000000

Gegenseitiger Ausschluss

Verteilter Algorithmus - Gleichzeitiger Zugriff 3

m PO bendtigt die Ressource nicht mehr.
m PO sendet OK an erste Anfrage in Queue.
m P2 erhilt Zugriff.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000000 e000 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Verteilter Algorithmus - Bewertung

m Was passiert wenn ein Knoten ausfallt?

m Koénnen wir den Algorithmus anpassen?

m Wieviele Nachrichten werden benétigt?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 0000000000000 e00 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Token Ring Algorithmus

o

m Prozesse werden in ringférmigen Overlay Netzwerk angeordnet.
m Erster Prozess erhalt Token.

m Token stellt Berechtigung dar die Ressource zu verwenden.

m Wird Ressource nicht benétigt, wird Token weitergeleitet.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[}

[o] 0000 [o] [o]
000 [0000000000000 0 000000000000 00e0 o]
(e]e] 0000 Q000000000000 00 [¢]

880000000000000000 88000000

Gegenseitiger Ausschluss

Token Ring Algorithmus - Bewertung

m Was passiert wenn ein Knoten ausfallt?

m Wieviele Nachrichten werden bendtigt?

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ
[} Q000

600 o}

[e]e] QOO

Q
880000000000000000

Gegenseitiger Ausschluss

Vergleich

Algorithmus

Logische Uhren Gegenseitiger Ausschluss
000000000000
0000000000000
000000

[o] [o]

[e]e] 000000000000 000e
Q0 [¢]

00

(e]¢]

Nachrichten pro Ein/Austritt

Zentralisiert
Verteilt
Token Ring

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

3
2N-1
1, ...,

Abschluss
[}
e}

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
Q000 [}

[o] [o] [o]
000 [0000000000000 0 000000000 00O0000 o]
(e]e] 0000 Q000000000000 00 °

880000000000000000 88000000

Zusammenfassung Gegenseitiger Ausschluss

Zusammenfassung Gegenseitiger Ausschluss

m Mutex mit Koordinator
m Mutex verteilt

m Mutex Token Ring

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[]

800 8000 80000000000000 8000000000000000 o
00 0000 000000000000000 e}
600000000000000000 00000000
ele} 00
Zusammenfassung
Zusammenfassung
Reale Uhren:

m wall time vs. monotonic clocks

m Skew und Drift

m Synchronisieren: extern (Cristian, NTP), intern (Berkeley)
Logische Uhren:

m Lamport: Ein Zahler pro Knoten. ,,Wenn es vorher war, dann ist
der Zeitstempel kleiner.”

m Vektor: N Zahler in jedem der N Knoten. Kausalitat. ,Wenn
der Zeitstempel kleiner ist, dann war es vorher."

Ausschluss: Koordinator oder verteilt = Zusatzliche Nachrichten.

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Einstieg Reihenfolge ist relativ Logische Uhren Gegenseitiger Ausschluss Abschluss
[} [ole]e] [} o
600 o} 00000000000000 6000000000000000 °
[e]e] Q000 Q0000000000000 0 ¢}
0000000000000 00000 Q0000000
[e]e] [e]e]
Abschluss

Fir koordinierte Projekte!

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

Literatur

Verweise |

Bilder:

Arne Babenhauserheide

Verteilte Systeme 2: Koordination

	Einstieg
	Willkommen bei Verteilte Systeme!
	Wiederholung
	Ablauf heute

	Reihenfolge ist relativ
	Problem der Reihenfolge
	Uhren + Synchronisation
	Uhren
	Synchronisation
	Zusammenfassung Uhren + Synchronisation

	Logische Uhren
	Logische Uhren
	Lamport Uhren
	Vektor Uhren
	Kausal geordneter Multicast
	Zusammenfassung Logische Uhren

	Gegenseitiger Ausschluss
	Gegenseitiger Ausschluss
	Gegenseitiger Ausschluss
	Zusammenfassung Gegenseitiger Ausschluss

	Abschluss
	Zusammenfassung
	Abschluss

	Anhang
	
	Literatur

