
Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Willkommen bei Verteilte Systeme

Willkommen bei Verteilte Systeme!

Von Datenbanken
über Webdienste

bis zu p2p und Sensornetzen.

⌣̈

Heute: Einführung und Überblick
A distributed system is a system that prevents you from
doing any work, when a computer you have never heard
about fails.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Willkommen bei Verteilte Systeme

Materialien

Distributed Systems
Martin van Steen and Tanenbaum (2017)

kostenloses ebook: https://www.distributed-systems.net

ISBN-13: 978-1543057386

Distributed Systems - An Algorithmic Approach
– Sukumar Ghosh (2015).

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://www.distributed-systems.net

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Willkommen bei Verteilte Systeme

Folien u.ä.

Weitere Quellen werden bei Verwendung aufgeführt.

Folien: https://www.draketo.de/software/
vorlesung-verteilte-systeme

Glossar zu Netztechnik:
https://www.draketo.de/software/
vorlesung-netztechnik#glossar-netztechnik

Gemeinsamer Glossar und Notizen in einem cryptpad.

Zur Vorbereitung: Drucken Sie bitte die Version mit vielen Folien
pro Seite für schnelle Notizen.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://www.draketo.de/software/vorlesung-verteilte-systeme
https://www.draketo.de/software/vorlesung-verteilte-systeme
https://www.draketo.de/software/vorlesung-netztechnik#glossar-netztechnik
https://www.draketo.de/software/vorlesung-netztechnik#glossar-netztechnik

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Organisatorisches

Dozent

Arne Babenhauserheide

Physik (Dipl., Dr., CO2

Seit 2004 p2p Netze

Seit 2017 Softwareentwickler als Beruf

Python, Scheme, HTML/CSS, Java, JS/TS, Fortran, Bash,
Emacs, Ruby, . . .

arne_bab@web.de

Vorlesung bis 2020 gemeinsam mit Carlo Götz.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Organisatorisches

Arbeitsstelle

Disy Informationssysteme GmbH in KA

Datenanalyse, Reporting, Geoinformation und Geo-Analytics

~ 200 MA, Gründung 1997 (ich bin seit 2017 dabei)

https://www.disy.net

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://www.disy.net

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Organisatorisches

Arbeitshintergrund
Tech hinter Cadenza

Java 24 (mit Spring und Ignite)
Web-Tech (Web-Components, JS/TS)
Verschiedene Datenbanken
3 mio LOC

Organisation
~80% in Karlsruhe, weitere international verteilt.
N-Wochen Sprints, viel Home-Office ⇒ Zoom, Rocket Chat
Tools: Linux, Mac, Windows, IntelliJ, VS Code, Emacs, . . .
Infrastruktur: CI mit Jenkins und Gitlab, Kubernetes-Cluster
Trunk-based development mit slbs gegen Merge-Konflikte

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Organisatorisches

Sie

Motivation für das Studium?

Vorwissen zu verteilten Systemen?

Erinnerung an Netztechnik?

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele der Vorlesung

Ziele der Vorlesung
Sie verstehen, wo sie Verteilung vermeiden sollten.

Sie verstehen, was sie beachten müssen, wenn Sie verteilen.
Sie kennen Werkzeuge und Techniken, die ihnen helfen.

Sie können einschätzen, welche Garantien sie wirklich brauchen.

Sie können einschätzen, welche Kompromisse sie eingehen
sollten und welche nicht.

Latenz < 300ms für eine Webseite

Latenz < 30ms für Interaktive Systeme!

Das passiert Ihnen nicht:
https://www.ccc.de/de/updates/2022/web-patrouille-ccc

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://www.ccc.de/de/updates/2022/web-patrouille-ccc

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele der Vorlesung

Erwartungen

Meine Wünsche
Ich will, dass Sie gerne kommen.
Es ist Arbeit, und Arbeit sollte
Spaß machen.
Ich will, dass Sie Verständnis von
Verteilten Systemen mitnehmen.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele der Vorlesung

Ihre Wünsche

Projekt Erfolgreich abschließen

Im Cryptpad / auf Tafel sammeln.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele der Vorlesung

Fragen

Verteilung der Slides?

Mail der Kurssprecher(in)?

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele der Vorlesung

Ablauf Semester

0 Grundlagen

1 p2p (peer-to-peer)

2 Clocks/Zeit, usw.

3 Algorithmen, Shared State

4 Datenbanken konkret: CAP, DBs

5 Sicherheit in der Praxis, Sensornetze

6 Präsentationen der Studierenden, 15min pro 3er-Gruppe

7 tbd, Wiederholung

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele der Vorlesung

Präsentationen

Wählen Sie ein Thema
Themenvorschlag per E-Mail

gerne auch eigene

sehr gerne mit Vorwissen / Hobby

bis zur dritten VL

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele der Vorlesung

Themenideen
FOSDEM Vorträge

Verblindung in GNU Taler

Wifi and LoRa mit Reticulum

libresilient (p2p web fallback)

Distributed Game Architecture

Virtualization &
Containerization

Load Balancing + Autoscaling

Verschlüsselung in Signal

Botnet(-s)

Message Queues: Rabbit, Kafka,
ZeroMQ, . . .

Seti@home / Folding@Home

telnet

IRC

ssh

OAuth

Ein eigenes Projekt

Papers we love

OWASP Top 10

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://fosdem.org/2026/schedule/events/
https://taler.net
https://github.com/markqvist/reticulum
https://resilient.is/about/
https://github.com/papers-we-love/papers-we-love
https://owasp.org/Top10/2025/0x00_2025-Introduction/

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Projekte

Projekte 2021

All Chats Are Beautiful
Distributed Key/Value Store
FreeChat
HTTP-Tunneling
IPC in Interpreter
Kooperative
WLED-Steuerung
Load Balancer
p2p Chat in Minecraft

p2p iOS Kommunikation
(Local Pal)
Risiko Multiplayer
Schiffe versenken
Snake Multiplayer
(Butchered Snake)
Statuspage (openmonitor)
Vier gewinnt
Vollständig dezentralisierte
MessageQueue
WebChat

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Projekte

Projekte 2022
Berechnung auf mehreren
Servern
Botnetz mit CnC
Chat mit 2 Servern
Chat mit Python
ESP32-Chat Captive Portal
Game Of Life verteilt
Gruppenchat in Java
Gruppenchat mit Javascript
IoT im Heimnetz
Kommunikation zwischen
Spieleservern
MQTT Broker

Multithreading in Spice
Nerdlegame als 1vs1
Online TicTacToe
Online-Spiel in GoDot
P2P-Chat mit
Directory-Server
RPi Captive Portal
Schiffeversenken 1vs1
P2P Voice Chat über UDP
Teilen von Trainingsplänen
VS Chat in Java
Viewer-Room

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Projekte

Projekte 2023

Kaesekaestchen
BlackJack
ChannelMaster
DistributedKeyValueStore
distripool
Password Encryption App
Sonoff Basic R2 Webservice

ChatABC
MapReduce on Steroids
Der Pizzabesteller
dezentraler Chat
SmartDown
eins-chat
peer gewinnt
MileStarter
DontGetAngry

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Projekte

Projekte 2024

PrivateCA
bilder malen und verschicken
Nudge
MonteCarloPi
Paradocs
Schaltsimulation
Ambi Mesh
Suntimer

ChatApp
Schachspiel
Schiffeversenken
JWT Chat
Chat in Python
Konsolenbasierter
Gruppenchat in Java
Verteilte 3DS-ButtonBox
Dokument-
Kollaborationsanwendung
Taskify

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Projekte

Projekte 2025

Task Manager
Online 4-gewinnt
SSL Chat Projekt
Musik Synchronisation
Kollaboratives Whiteboard
Ich packe meinen Koffer
lightweight Load Balancer
Multiplayer Dartscounter
Tic Tac Toe
Reversi

Asynchrone Kommunikation
in Microservice Architekturen
Verteilte Sensorauswertung
Telefunken
FileShare
Verteilte Datenbank
pushNotification
QuizTogether
Werwolf
YT-Watch-Together
Hot Potato

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ablauf heute

Ablauf heute

Grundlagen und -begriffe verteilter Systeme

Architekturen verteilter Systeme

Prozesse und Threads

Kommunikation

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Einführung

Sie kennen Charakteristiken verteilter Systeme

Sie kennen Ziele verteilter Systeme

Sie kennen die Dimensionen und Probleme der Skalierung

Sie erkennen jede der „Fallacies of distributed systems“

Sie kennen Arten verteilter Systeme

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Was sind verteilte Systeme?

Was sind für Sie verteilte Systeme?

Beispiele?

Im Cryptpad / auf Tafel sammeln.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Was sind verteilte Systeme?

Ein verteiltes System ist eine Sammlung autonomer Rechen-
elemente, die den Nutzenden wie ein einzelnes kohärentes
System erscheint.

autonome Rechenelemente Arbeiten voneinander unabhängig,
egal ob Soft- oder Hardware, auch Knoten genannt

einzelnes kohärentes System Nutzende haben den Eindruck ein
einzelnes System zu bedienen (Erfordert
Zusammenarbeit der Knoten).

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Prozesse? (Abgrenzung)

Bilden mehrere Prozesse auf einem Computer ein verteiltes System?

Autonome Knoten verfügen über eigenen Zeitbegriff.

Es gibt keine globale Uhr.

Probleme bei Synchronisation und Koordination.
Prozesse auf einem System können sich hardwaregestützt
synchronisieren.

aber mit Effizienzverlust1

1Auch low-level → branchless algorithms for koordinationsfreien Code
Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Sammlung von Knoten: Gruppenzugehörigkeit

Einstieg ins System

Darf jeder Knoten beitreten?

Wie finden sie sich?

Wie wird sichergestellt, dass nur mit Knoten innerhalb des
Systems kommuniziert wird?

Oft als Overlay Network realisiert.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Overlay Networks

Meist dicht verbunden
Für jedes Knotenpaar existiert ein Pfad zwischen den Knoten

Zwei Varianten:

strukturierte Overlays Jeder Knoten hat eine definierte
Auswahl an Nachbarn mit denen er kommuniziert.

unstrukturierte Overlays Jeder Knoten hat Referenzen zu
zufällig ausgewählten anderen Knoten.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Kohärentes, einzelnes System

Nutzer kann nicht sagen, ob:
Berechnungen verteilt stattfinden

Daten verteilt gespeichert werden

Daten repliziert werden

„Verteilungstransparenz“
Problem: Knoten und Verbindungen zwischen Knoten können
(und werden) jederzeit ausfallen.

Ausfall-Transparenz schwierig bis unmöglich.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Middleware

Separate Schicht über dem Betriebssystem.
Von Applikationen verwendete Funktionalität:

verteilte Transaktionen

Fehler Recovery

Authentication & Authorization

Kommunikation mit anderen Knoten

. . .

Risiko: Effizienzverlust durch zu starke Garantien.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Einführung

Middleware als Betriebssystem für verteilte Systeme

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele verteilter Systeme

Warum? Ziele verteilter Systeme

Just because it is possible to build a distributed system
does not necessarily mean that it is a good idea.

Teilen von Ressourcen

Verteilungstransparenz

Offenheit

Skalierbarkeit

Macht minimieren

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele verteilter Systeme

Teilen von Ressourcen

Auf geteilte Ressourcen zugreifen
Beispiele:

Dropbox, GDrive etc.

Google Docs

p2p Filesharing (Bittorrent, Blizzard Launcher)

p2p Streaming (Spotify anfangs)

p2p Accountsuche (Skype anfangs)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele verteilter Systeme

Verteilungstransparenz

Nutzenden soll nicht auffallen, dass Berechnungen und Daten über
mehrere Computer verteilt sind.

Transparenz Beschreibung
Zugriff Verstecke Unterschiede in Datenrepräsentation.
Ort Nutzer können nicht sagen wo sich ein Objekt physisch befindet.
Relokation Objekte können während ihrer Benutzung den Ort ändern.
Replikation Verberge, dass ein Objekt repliziert ist.
Concurrency Verberge gleichzeitige Nutzung eines Objekts.
Fehler Verstecke Ausfall und Wiederinbetriebnahme von Objekten.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele verteilter Systeme

Verteilungstransparenz: Probleme

Latenz2

Tradeoff: Verteilungstransparenz vs. Performance

Konsistenz bei Replikation
komplette Verteilungstransparenz ist unmöglich

Verteilung für Entwickelnde explizit? (Abstraktionsbruch; aber
Effizienz!)

2Vielleicht nur eine langsame Datenbank? Optimieren mit Promises? Beispiel:
on-demand overlay

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele verteilter Systeme

Offenheit

Verteilte Systeme bieten und verwenden Komponenten, die
einfach integriert oder wiederverwendet werden können
Anforderungen:

definierte Schnittstellen (IDL (Syntax) + docs (Semantik))

Anwendungen portabel

Systeme erweiterbar

IDL: Interface Definition Language.3

Wer kontrolliert die API?

3Im OS: Hurd translator. Beispiele: https:
//git.savannah.gnu.org/cgit/hurd/hurd.git/tree/hurd/msg.defs#n28

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://git.savannah.gnu.org/cgit/hurd/hurd.git/tree/hurd/msg.defs#n28
https://git.savannah.gnu.org/cgit/hurd/hurd.git/tree/hurd/msg.defs#n28

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Ziele verteilter Systeme

Skalierbarkeit

3 Dimensionen:

Größe: Nutzer- und Ressourcenanzahl können ohne
Performanceprobleme steigen.

Geographie: Nutzer und Ressourcen können durch große
Distanzen getrennt sein, ohne dass Latenz wirklich auffällt.

Administration: Das System kann unterschiedliche
Organisationen umspannen.

log(N) ist gut.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Probleme

Probleme bei Skalierung

“There is no free lunch”

“There is no silver bullet”4

“Law is hard”

4Bild: GermanWoodcut1722.
Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Probleme

Probleme bei Skalierung der Größe

Speicherkapazität inkl. I/O Transferrate

Rechenkapazität, begrenzt durch CPUs

Netzwerk zwischen Nutzer und System

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Probleme

Probleme bei geographischer Skalierung

viele bestehende Systeme erwarten schnelle LANs
Oft synchrone Kommunikation

werden langsam durch erhöhte Latenz5

5Manchmal sogar mit InfiniBand als Anforderung.
Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Probleme

Probleme bei Administrativer Skalierbarkeit

Unterschiedliche Richtlinien für Verwaltung, Sicherheit etc.

teilweise politische und soziologische Probleme

DSGVO?

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Skalierungstechniken

Skalierungstechniken für Anwendungen

vertikale Skalierung mehr CPU, RAM etc. für die Computer
(limitiert)

horizontale Skalierung mehr Kapazität durch Hinzufügen neuer
Computer

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Skalierungstechniken

Verstecken von Latenz

Asynchrone Kommunikation
manchmal nicht möglich (Bsp: interaktive Anwendungen)

oft komplexere Algorithmen

Berechnung im Client
Bsp: Form-Validierung in JS
Konsistenz?

Gleicher Code?

Gleiche Daten?

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Skalierungstechniken

Partitionierung, Replikation, Caching

Partitionierung verteile komponenten auf mehrere Maschinen

Bsp: DNS, DB-Sharding, WWW

Replikation und Caching Kopien auf mehreren Computern

Bsp: Replizierte DBs, Browsercache, Proxies

Führt zu Inkonsistenz

globale Synchronisation ist langsam

Abhängig von der Anwendung

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Skalierungstechniken

Fallbeispiel

Um welche Dimension der Skalierung handelt es sich? Welche
Skalierungstechnik wird eingesetzt?

Ziel: Windows Updates gleichzeitig laden

Problem: Einbruch Netzleistung durch viele Downloads
Skalieren: Proxyserver, der die Updates einmal von MS lädt

Downloads aus dem Firmennetz vom Proxy

Dimensionen: Größe, Geographie, Administration

Techniken: Latenz verbergen, Partitionierung, Replikation

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Skalierungstechniken

PAUSE

PAUSE

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Skalierungstechniken

Fallacies of distributed Systems

1 The network is reliable

2 The network is secure

3 The network is homogeneous

4 The topology does not change

5 Latency is zero

6 Bandwidth is infinite

7 Transport cost is zero

8 There is one administrator

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Arten verteilter Systeme

Arten verteilter Systeme

High Performance Distributed Computing (HPC)

Cloud

Distributed Information Systems

Pervasive Systems

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Arten verteilter Systeme

HPC: Cluster Computing
einzelne (rechenintensive) Anwendung wird parallel auf
mehreren Computern ausgeführt

Knoten durch LAN verbunden

homogen

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Arten verteilter Systeme

HPC: Grid Computing
keine Annahmen bzgl. Ähnlichkeit von:

Hardware

Betriebssystem

Netzwerk

Sicherheit

Administrative Domänen

Bsp: mehrere Hochschulen schließen ihre Cluster zu einem Grid
zusammen.

Grid kann von Allen verwendet werden.

Forschung: Probleme wie beim Cluster, aber Grid gibt Förderung.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Arten verteilter Systeme

Cloud Computing

Forschung: Probleme wie beim Grid, aber Cloud gibt Förderung.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Arten verteilter Systeme

Cloud Computing - Schichten

Hardware CPUs, Router, USVs, Kühlung

Infrastruktur verwendet Virtualisierung, um Kunden mit virtuellen
Servern und Speichern zu versorgen

Plattform bietet Kunden APIs für Speicher usw. (Amazon S3)

Anwendung Programme für Endanwender (Google Docs)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Arten verteilter Systeme

Cloud Computing - Gefahren

Vendor Lock-in

Sicherheit

Datenschutz

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Arten verteilter Systeme

Distributed Information Systems (DIS)

Einzelne Anwendungen zu einem verteilten System
zusammenfassen

Oft Legacy-Anwendungen.

Methoden: verteilte Transaktionen, Enterprise Application
Integration

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Allgegenwärtige Systeme

Pervasive Systems

Das Netz ist immer dabei.

Treten durch Mobile und IOT verstärkt auf.
Wird unterteilt in:

Ubiquitous Computing

Mobile Computing

Sensornetze

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Allgegenwärtige Systeme

Ubiquitous Computing

Geräte sind vernetzt

Interaktion mit Benutzer ist kaum merkbar

System erkennt Nutzerkontext und optimiert Interaktion

Geräte laufen weitestgehend autonom

System beherrscht viele Interaktionen

Wer weiß, was ich mache?

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Allgegenwärtige Systeme

Mobile Computing

Viele unterschiedliche Geräte: Smartphones etc.

ständige Änderung des Ortes

–> keine stabilen Routen, schwankende Geschwindigkeiten,
Verbindungsausfall

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Allgegenwärtige Systeme

Sensornetze

Viele Sensoren (bis zu mehreren Tausend)

Teilweise Grundlage für ubiquitous computing

Arbeiten zusammen für effiziente Verarbeitung der Daten

Meistens drahtlos und batteriebetrieben (leicht aufzusetzen)

Energieverbrauch und Kommunikation minimieren! WLAN ist
hier teuer.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

Zusammenfassung

Verteilte Systeme sind eine Sammlung autonomer Knoten, die
als einzelnes kohärentes System erscheinen.
Verteilte Systeme versuchen zu bieten:

Teilen von Ressourcen

Verteilungstransparenz

Offenheit

Skalierbarkeit

Verteilung hat immer einen Preis

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

Zusammenfassung 2

Skalierung in: Größe, Geographie und Administration.

Techniken: Verstecken von Latenz, Partitionierung, Replikation
und Caching.

’Fallacies of distributed systems’ erkennen!

Verteilte Systeme: Cluster-, Grid-, Cloud-, Ubiquitous-, Mobile
Computing, verteilte Informationssysteme, Sensornetze

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

Fallacies of distributed Systems

1 The network is reliable

2 The network is secure

3 The network is homogeneous

4 The topology does not change

5 Latency is zero

6 Bandwidth is infinite

7 Transport cost is zero

8 There is one administrator

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

PAUSE

PAUSE

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Fallacies

Fallacies

Um sie zu erkennen.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Distributed

Fallacies of distributed Systems
Nochmal?? Meinst du das ernst?? Ja :-)

1 The network is reliable

2 The network is secure

3 The network is homogeneous

4 The topology does not change

5 Latency is zero

6 Bandwidth is infinite

7 Transport cost is zero

8 There is one administrator

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Distributed

Transport cost is zero

The two most expensive operations in terms of cost were
the orchestration workflow and when data passed between
distributed components.
. . .
Moving our service to a monolith reduced our infrastructure
cost by over 90%. It also increased our scaling capabilities.
— Marcin Kolny, 2023, für Amazon Prime Video

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Distributed

One Administrator

Wo läuft „das System“ — wer kontrolliert die Rechner?

Gelten für alle die gleichen Gesetze?

Welche Regeln gelten für Kommunikation?6

Gibt es mehr als eine Implementierung?

. . . ?

6Kontext: Solving the Moderator’s Trilemma with Federation
Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://pluralistic.net/2023/03/04/pick-all-three/#agonism

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Consumer

Fallacies of Consumer-Level Services

1 The harddisk is reliable

2 Power is constant

3 Your IP is reachable

4 Constant factors are negligible

5 Libraries are stable7 and API’s are maintained

6 Textfiles are simple,
the protocol is stable, and
the dataformat is fixed

7Volatile Software:
https://stevelosh.com/blog/2012/04/volatile-software/

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://stevelosh.com/blog/2012/04/volatile-software/

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturen verteilter Systeme

Architekturen verteilter Systeme

Aus der Vogelperspektive.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturen verteilter Systeme

Ziele

Sie kennen verbreitete Architekturstile

Sie verstehen das Konzept von Overlay-Netzwerke

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturen verteilter Systeme

Merkmale von Architekturstilen

Verwendete Komponenten und ihre Schnittstellen.

Verbindung zwischen Komponenten (RPC, Messaging).

Daten, die zwischen Komponenten ausgetauscht werden.

Konfiguration der Komponenten zu einem System

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturstile

Architekturstile

Layered | Schichten

Object-based | Objektbasiert

Resource-centered | Resourcenzentriert | wie REST

Event-based | Ereignisbasiert

Stile meist kombiniert.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturstile

Layered | Schichten

Calls gehen (meist) nur in eine
Richtung

Bsp für Ausnahme: Callback in
async IO

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturstile

Dreischicht

Wird oft verwendet
Unterteilt in 3 Schichten:

Benutzerschnittstelle (GUI oder API)

Verarbeitung, enthält die Funktionen einer Anwendung

Persistenz, verwaltet die Daten, die von der Verarbeitung
verändert werden

Beispiel: Web, Backend, Datenbank.8

8Disy Cadenza ist (inzwischen) ein klassischer Vertreter. Mit (wenig)
Server-side Rendering) für Startzeit.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturstile

Object-based | Objektbasiert
losere Organisation der
Komponenten
Kommunikation durch z.B.
RPC
Zustand meist in seiner
Komponente/Objekt
gekapselt
Service statt Objekt: SOA
(Service oriented architecture,
jetzt „Microservices“)a

aCapabilities im Netz:
https://spritelyproject.org/

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://spritelyproject.org/

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturstile

Resource-based - an REST orientiert

Ressourcen über Namen idenitfiziert (URLs bei REST).

Alle bieten die gleiche Schnittstelle (HTTP Verben bei REST).

Alle benötigten Informationen sind im Serviceaufruf
enthalten (z.B. als URL-Parameter).

Nach einem Aufruf vergisst der Service alles über den Aufrufer.

Bsp: REST interface für S3 PUT
http://bucket.s3.amazonaws.com/Key

Problem: Großer Zustand (z.B. Error 414: Request-URI Too Long —
ab 2048 Zeichen in IE11/Edge16, 8k in CDNs)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://stackoverflow.com/a/417184

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturstile

Event-based | Eventbasiert
Komponenten
kommunizieren durch Events
Events durch Event Bus
propagiert
Komponenten referentiell
entkoppelt (⇒ kein shared
memory)
persistente Speicherung der
Events führt zu temporaler
Entkoppelung
Verwandte Events als topic
abonnieren

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Architekturstile

Verschiedene Arten von Koordination

Temporally coupled Temporally decoupled
Referentially coupled Direct Mailbox
Referentially decoupled Event-based Shared data space

Shared data space: fancy für „wie eine Datenbank“

Wie unterscheiden sich die Kosten?

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zentralisierte System-Architekturen

Zentralisierte System-Architekturen

Prozesse in 2 (evtl. überlappende) Gruppen unterteilt:
Clients

Server

Server bieten Dienste an.

Clients nutzen diese Dienste.

Kommunikation meist Request-Reply

Macht beim Server ⇒ Hierarchie.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zentralisierte System-Architekturen

Zweischichtige Konfiguration Diagramm

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zentralisierte System-Architekturen

Zweischichtige Konfiguration

Die Anwendungsebenen UI,
Application und DB werden
zwischen Client und Server
aufgeteilt.
Auf 3 Schichten erweiterbar
indem die DB auf eigene
Maschine ausgelagert wird.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zentralisierte System-Architekturen

Extrembeispiel

https://dryads-wake.1w6.org/

Wieviel Logik ist im Server? Schauen Sie nach
⇒ F12 Hacking Key!

Bitte schießen Sie es nicht ab. Läuft auf kleinstem mietbaren VPS
:-)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://dryads-wake.1w6.org/

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zentralisierte System-Architekturen

Übung 1/2: Aufgabe

Ordne die Komponenten 1-4 ihren Anwendungsebenen zu.

Anwendungsebenen: Welche Komponenten sollten auf dem
Server und welche auf dem Client laufen? Begründen Sie Ihre
Antwort. Gruppenarbeit Randbedingungen (nächste Folie)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zentralisierte System-Architekturen

Übung 2/2: Randbedingungen: Latenz Client–Server

A: 1ms (Lokaler Rechner, effizient9)

B: 10ms (Lokaler Rechner, effizient aber mit Compositor,
Regionaler Spiele-Ping, Typische USB-Tastatur)

C: 100ms (Lokaler Rechner10, Spiele-Ping: 20.000km)

D: 1s (Neue Webseite öffnen)

E: 2.5 Minuten bis 5 Minuten (Mars) 50–100 mio km

F: 3 Wochen (Delay Tolerant Networking — Nomaden)

9GVim ohne Compositor →
https://pavelfatin.com/typing-with-pleasure/

10vscode: https://github.com/Microsoft/vscode/issues/27378
Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://pavelfatin.com/typing-with-pleasure/
https://github.com/Microsoft/vscode/issues/27378

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Dezentralisierte System Architekturen (p2p)

Dezentralisierte System Architekturen (p2p)

Prozesse werden nicht nach Client und Server unterteilt; alle
sind gleichgestellt.
Overlay Network:

Knoten im Netz sind Prozesse.

Kanten im Netz sind Kommunikationswege.

2 Arten von Overlay Networks: Strukturiert und Unstrukturiert

Übersicht und Konzepte. Konkrete Netze im nächsten Block.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Dezentralisierte System Architekturen (p2p)

Strukturierte Overlay Networks - Beispiel Chord
Knoten als Ring angeordnet.
Knoten kennt den Nachfolger.
Zusätzlich Abkürzungen.
Daten mit dem Schlüssel k auf
Knoten mit der kleinsten id mit
id ≥ k → Nachfolger (successor).
Suche

Shortcut zu id ≤ k (vor Key ⇒
kennt Nachbarn),
Nachfolger mit id ≥ k

Konstruktion: kürzester Weg
zwischen 2 Knoten hat Länge
O(log N).

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Dezentralisierte System Architekturen (p2p)

Flooding
Algorithmus:

Ein Knoten erhält eine Anfrage für einen Wert.

Der Knoten sucht lokal nach dem Wert.

Findet er ihn nicht, übergibt er die Anfrage an alle Nachbarn.

Das Spiel wiederholt sich.

Kann hohe Last erzeugen.
Anfragen mit einer Time-To-Live (TTL).

z.B. maximale Anzahl von Sprüngen

Geht immer, aber selten gut.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Dezentralisierte System Architekturen (p2p)

Zusammenfassung

Architekturstile: Layered, Object-based, Resource-based,
Event-based.

Zentralisierte Architekturen: n-Schichten.

Dezentralisierte Architekturen: (un)strukturierte Overlay
Networks
In Realität meist Mischformen.

Bsp: Bittorrent verwendet zentralisierte Server (Tracker) zum
Sammeln aktiver Knoten.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Dezentralisierte System Architekturen (p2p)

PAUSE

PAUSE

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Prozesse

Prozesse: Ziele

Sie verstehen den Unterschied zwischen Prozessen und Threads

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Prozesse

Prozesse: Zustand

Ein Prozess ist ein Programm in Ausführung.
Der Zustand eines Prozesses wird im Prozesskontext
gespeichert:

Registerwerte

Stackpointer

Programmzähler

Memory Maps

. . .

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Prozesse

Prozesse: Isolation

Betriebssystem sorgt für Isolation zwischen Prozessen:
Eigene Speicherbereiche.

Unerlaubte Zugriffe (durch einen anderen Prozess): segfault.

Kommunikation über Message passing.
Einfachste: Unix pipe.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Threads

Threads

Wie Prozesse
Threads sind nebenläufig:
führen Code unabhängig von
anderen Threads aus.

Unterschiede
Stack: Threads führen
minimalen Kontext mit sich
(Java: 1MiB Stack =>
-Xss512k).
Shared Memory: Threads im
gleichen Prozess können auf
den gleichen Speicher
zugreifen.
Kontextwechsel, Erzeugen
und Zerstören von Threads
ist billiger.
Im Kernel- oder Userspace
implementiert.

Was sind die Vor- und Nachteile
von Kernel- vs. Userspace
Threads?

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Threads

Lightweight Threads: fibers/goroutines/virtual threads/. . .

Threads in Userspace

Millionen von Threads, fast gratis wenn Inaktiv

Oft explizite Kommunikation
Skynet Benchmark: 1 Million Threads erstellen und als Baum
Kommunizieren in https://github.com/atemerev/skynet

Eigenes Beispiel: https://github.com/atemerev/skynet/
blob/master/guile-fibers/skynet.w

Java: Project Loom:
https://openjdk.java.net/projects/loom/

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://github.com/atemerev/skynet
https://github.com/atemerev/skynet/blob/master/guile-fibers/skynet.w
https://github.com/atemerev/skynet/blob/master/guile-fibers/skynet.w
https://openjdk.java.net/projects/loom/

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Threads

Lightweight Threads: Glossar

Fiber Kooperativ statt Präemptiv.

Green Thread Braucht keine OS-Unterstützung.

Coroutine Funktion mit yield statt return.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Beispiel

Dispatcher/Worker Modell
Ein Thread (Dispatcher) liest eingehende Requests

Die Request wird an Worker Thread gegeben, der die
eigentliche Arbeit erledigt.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

Zusammenfassung

Prozesse werden vom OS isoliert: Messages.

Threads teilen Speicher.

Threads sind günstiger zu switchen.

Threads in Kernel- oder Userspace implementiert.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kommunikation

Kommunikation

Interprocess communication is at the heart of all distributed
systems.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kommunikation

Ziele

Sie erkennen, wie Middleware als Schicht fungieren kann

Sie kennen RPC (Remote-Procedure-Calls)

Sie erkennen Messaging-Strukturen

Sie können Kostenmetriken für Overlays rechnen

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kommunikation

Synchronization points

Worauf Sie warten können.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kommunikation

Arten der Kommunikation
transient vs. persistent

transient: Nachricht wird
verworfen, falls sie nicht
ausgeliefert werden kann.
persistent: Nachricht wird
gespeichert bis sie übermittelt
wurde.

asynchronous vs. synchronous
asynchronous: Sender fährt nach
Übergabe der Nachricht an
Kommunikationsstack fort.
synchronous: Sender wird
geblockt bis Nachricht übermittelt
wurde.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Schichtmodelle

Schichtmodelle

Definition von OSI:

Schicht bietet der darüberliegenden Schicht einen Dienst an.

Dieser Dienst wird durch eine Schnittstelle spezifiziert.

Schichten verwenden jeweils ein Protokoll um mit der
Gegenseite (auf der gleichen Schicht) zu kommunizieren.

Beim Senden einer Nachricht wird die Nachricht an die
darunterliegende Schicht gereicht.

Anschauliche Kurzbeschreibung: osi-model.com/

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://www.osi-model.com

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Schichtmodelle

Middleware Schicht

Middleware soll allgemeine Dienste und Protokolle bereitstellen:

Kommunikation

(Un)marshalling (binär ⇒ Datenstruktur)

Namensprotokolle: Teilen von Ressourcen

Sicherheit

Skalierung: Replikation/Caching

Die Implementierung eines verteilten Systems kann sich auf das
Anwendungsprotokoll konzentrieren.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Schichtmodelle

Middleware Schicht 2

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Schichtmodelle

Middleware in Cadenza

Backend, physisch verteilt
Apache Ignite shared-nothing Clustering
Präzise Cache-invalidation durch explizite Nachrichten

Frontend, logisch verteilt
Redux store zur Synchronisierung und für Events
⇒ PATCH statt PUT/POST

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Remote Procedure Call (RPC)

Remote Procedure Call (RPC)

Soll möglichst wie ein normaler Methodenaufruf aussehen.

⇒ Zugriffstransparenz

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Remote Procedure Call (RPC)

Ablauf RPC

1 Client ruft stub auf. 6 Stub erhält Ergebnis.
2 Stub erstellt Nachricht. 7 Stub erstellt Nachricht.
3 Client OS sendet Nachricht. 8 Server OS sendet Nachricht.
4 Server OS ruft stub auf. 9 Client OS gibt an stub.
5 Stub entpackt Nachricht. 10 Stub entpackt Nachricht.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Remote Procedure Call (RPC)

Parameter Marshalling
Client und Server haben evtl.
unterschiedliche
Datenrepräsentation (z.B.
Little vs. Big Endian)
Parameter in Bytes
umwandeln
Auf Formate einigen
Komplexe Datenstrukturen?
Referenzen?
Änderungen kommunizieren?
Nie völlig transparent?

Referenzen
Post-Messages zwischen
iframes: Keine Referenzen
OCap: Mögliche Referenzen
als explizite Capabilities.
Entrance to the rabbit hole:
https://fosdem.org/
2021/schedule/event/
spritelygoblins/ (down
the ASCII rabbit hole)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

https://fosdem.org/2021/schedule/event/spritelygoblins/
https://fosdem.org/2021/schedule/event/spritelygoblins/
https://fosdem.org/2021/schedule/event/spritelygoblins/

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Remote Procedure Call (RPC)

Risiko: unpassende Garantien

Zu viel garantiert: viel Synchronisierung, langsam

Zu wenig garantiert: Bugs

Wir kommen in einem späteren Block mit CALM und CRDTs darauf
zurück.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Remote Procedure Call (RPC)

Zusammenfassung

Middleware als Schicht im Netzwerkmodell gesehen

Kommunikation nach transient/persistent und
asynchronous/synchronous unterschieden

RPC ist ein entfernter Methodenaufruf

Gibt Garantien.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Remote Procedure Call (RPC)

PAUSE

PAUSE

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Praxis: Ziele

Praxis: Ziele

Sie kennen grundlegende Beispiele zum schnellen Einstieg

Sie kennen Kostenmetriken für Overlays

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

RPC Server in Python

Einfacher RPC Server in Python

from xmlrpc.server import SimpleXMLRPCServer, SimpleXMLRPCRequestHandler

server = SimpleXMLRPCServer(("localhost", 8001))

def hi():
return "hi"

server.register_function(hi)
server.serve_forever()

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

RPC Server in Python

Einfacher RPC Client in Python

import xmlrpc.client

s = xmlrpc.client.ServerProxy("http://localhost:8001")
print(s.hi())

Wireshark-Time!

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Messaging mit ZeroMQ

Sockets mit definierten Kommunikationsmustern.

Sockets erlauben one-to-one
ZeroMQ bietet auch many-to-one und one-to-many:

request-reply

publish-subscribe

pipeline

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Request-Reply mit ZeroMQ - Server

import zmq

context = zmq.Context()
p = "tcp://127.0.0.1:8001"
s = context.socket(zmq.REP)

s.bind(p) # bind = listen here

while True:
message = s.recv_string()
if not "STOP" in message:

s.send_string(message + "*")
else:

break

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Request-Reply mit ZeroMQ - Client
import zmq

context = zmq.Context()
p = "tcp://127.0.0.1:8001"
s = context.socket(zmq.REQ)

s.connect(p)

s.send_string("hi")
message = s.recv_string()
print(message)
s.send_string("hi2")
violate request-reply => error!
s.send_string("too hasty")
message = s.recv_string()
s.send_string("STOP")
print(message)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Einwurf: Was bringt mir das?

Verständliche(-re) Muster ⇒ leichter zu kombinieren

Kommunikations-Struktur erzwingen ⇒ Fehlererkennung

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Publish-Subscribe mit ZeroMQ - Publish

import zmq, time

context = zmq.Context()
p = "tcp://127.0.0.1:8001"
s = context.socket(zmq.PUB)

s.bind(p)

while True:
time.sleep(3)
s.send_string("TIME " + time.asctime())

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Publish-Subscribe mit ZeroMQ - Subscribe

import zmq

context = zmq.Context()
s = context.socket(zmq.SUB)
p = "tcp://127.0.0.1:8001"

s.connect(p)

s.setsockopt_string(zmq.SUBSCRIBE, "TIME")

for i in range(5):
time = s.recv_string()
print(time)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Publish-Subscribe mit ZeroMQ

Implementiert Multicast

Subscribers bekommen nur Messages entsprechend ihrer
Subscription.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Pipeline mit ZeroMQ - Producer

import zmq, time

context = zmq.Context()
s = context.socket(zmq.PUSH)
p = "tcp://127.0.0.1:8001"

s.bind(p)

for i in range(100):
s.send_string(str(i))
time.sleep(0.1)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Pipeline mit ZeroMQ - Consumer

import zmq, time

context = zmq.Context()
s = context.socket(zmq.PULL)
p = "tcp://127.0.0.1:8001"

s.connect(p)

while True:
message = s.recv_string()
print(message)
time.sleep(int(message) * 0.01)

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Messaging mit ZeroMQ

Pipeline mit ZeroMQ

Erlaubt Verteilung von
Arbeit auf mehrere Consumer
Im Gegensatz zu
Publish-Subscribe wird jede
Message nur an einen
Consumer weitergegeben

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Message-oriented persistent communication

Message-oriented persistent communication

„message-queuing systems“ oder „Message-Oriented
Middleware (MOM)“

Persistente asynchrone Kommunikation.

Sender und Empfänger müssen nicht gleichzeitig aktiv sein.

Wie E-Mail.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Message-oriented persistent communication

Allgemeiner Aufbau

Prozess hat einen lokalen
Queue-Manager.
Queue Manager verwaltet die
Queue für den Prozess.
Prozess kann in die lokale
Queue Messages einstellen
und entnehmen.
Messages addressiert.
Adressdatenbank im
Queue-Manager.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Message-oriented persistent communication

Message Broker

bestehende Systeme
integrieren
Für jedes System eigenes
Messageformat
Nachricht von Prozess A an
B muss Bs Protokoll nutzen
Konvertierung von
Nachrichten durch
Komponente

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kostenmetriken für Multicast

Kostenmetriken für Multicast

Den Preis der Abstraktion quantifizieren.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kostenmetriken für Multicast

Multicast in der Anwendungsschicht

Ziel: Daten an mehrere Empfänger

Multicast auf IP Ebene zwischen ISPs selten umgesetzt
⇒ Multicast in der Anwendungsschicht
⇒ Abstraktions-Overhead
Overlay Netzwerk

Oft Baum: Pfade sind eindeutig

Mesh-Strukturen benötigen Routing

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kostenmetriken für Multicast

Metriken für Multicast mit Overlay

Cost metrics for Overlay Networks

Physical Network
Alice

Bob

Ra1

Erika

Rb1

Carol

David

7
Re

30 Rc 1

Rd

5

40 11

20

Kosten für physische Verbindungen sind gegeben.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kostenmetriken für Multicast

Link Stress für Multicast mit Overlay

Cost metrics for Overlay Networks

Physical Network
Alice

Bob

Ra1

Erika

Rb1

Carol

David

7
Re

30 Rc 1

Rd

5

40 11

20

Link Stress: Anzahl wiederholter Nutzungen einzelner Verbindungen.

Beispiel Link Stress von Alice zu Erika: (B, Rb), (Ra, Rb) mit Link
Stress jeweils 2.

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kostenmetriken für Multicast

Stretch für Multicast mit Overlay

Cost metrics for Overlay Networks

Physical Network
Alice

Bob

Ra1

Erika

Rb1

Carol

David

7
Re

30 Rc 1

Rd

5

40 11

20

Stretch: Verhältnis aggregierter Kosten auf dem Weg im Overlay
und dem optimalen Kommunikationsweg.

Beispiel Stretch von Alice zu Erika: Overlay = 1 + 7 + 1 + 1 + 7
+ 30 + 1 = 48, Optimal = 1 + 30 + 1 = 32 –> Stretch 48/32

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kostenmetriken für Multicast

Übung

Cost metrics for Overlay Networks

Physical Network
Alice

Bob

Ra1

Erika

Rb1

Carol

David

7
Re

30 Rc 1

Rd

5

40 11

20

Berechne Link Stress und Stretch für die Verbindung Erika zu Carol.

Link Stress: (Rd, D) (Rc, Rd) mit Link Stress jeweils 2

Stretch: 1 + 20 + 5 + 1 + 1 + 5 + 1 = 34, 1 + 20 + 1 = 22
–> 34/22

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Kostenmetriken für Multicast

Zusammenfassung

Messaging erlaubt entkoppelte Kommunikation
ZeroMQ bietet die Kommunikationsmuster:

Request-Reply

Publish-Subscribe

Pipeline

Multicast:
Wird auf Anwendungsebene umgesetzt

Link Stress und Stretch als Metriken für Overlay Netzwerke

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

Gesamtzusammenfassung 1

Sammlung autonomer Knoten, die als ein kohärentes System
erscheinen.

Ziele: Resourcen, Verteilungstransparenz, Skalierbarkeit

Skalierung: Größe, Geographie, Administration

Latenz, Partitionierung, Replikation, Caching

Fallacies!

Cluster, Grid, Cloud, Ubiquitous, Mobile, DIS, Sensornetze

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

Gesamtzusammenfassung 2

Architektur: Layered, Object, Resource, Event

Schichten und Overlay Netze

Prozesse sind isoliert, Threads teilen Speicher.

Middleware als Schicht: Übernimmt Verteilung, gibt
Garantien.

Messaging: Request-Reply, Pub-Sub, Pipeline.

Overlay metriken: Link Stress und Stretch

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Zusammenfassung

Fallacies of distributed Systems

1 reliable
2 secure
3 homogeneous
4 topology
5 latency
6 bandwidth
7 transport cost
8 administrator

1 hard disk
2 power
3 IP
4 constant factors
5 APIs
6 text

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Einstieg Einführung Fallacies Architekturen Prozesse Kommunikation Praxis Fin

Fin

Fin

⌣̈

Viel Erfolg in den nächsten Wochen!

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

Literatur

Verweise

Ghosh, S. (2015). Distributed Systems - An Algorithmic Approach.
Computer & Information Science. Chapman & Hall/CRC, 2
edition.

Steen, M. v. and Tanenbaum, A. S. (2017). Distributed Systems.
CreateSpace Independent Publishing Platform; 3.01 edition
(February 1, 2017), 3 edition.

Bilder:

Arne Babenhauserheide
Einführung und Grundlagen Verteilte Systeme

	Einstieg
	Willkommen bei Verteilte Systeme
	Organisatorisches
	Ziele der Vorlesung
	Projekte
	Ablauf heute

	Einführung
	Einführung
	Ziele verteilter Systeme
	Probleme
	Skalierungstechniken
	Arten verteilter Systeme
	Allgegenwärtige Systeme
	Zusammenfassung

	Fallacies
	Fallacies
	Distributed
	Consumer

	Architekturen
	Architekturen verteilter Systeme
	Architekturstile
	Zentralisierte System-Architekturen
	Dezentralisierte System Architekturen (p2p)

	Prozesse
	Prozesse
	Prozesse
	Threads
	Beispiel
	Zusammenfassung

	Kommunikation
	Kommunikation
	Schichtmodelle
	Remote Procedure Call (RPC)

	Praxis
	Praxis: Ziele
	RPC Server in Python
	Messaging mit ZeroMQ
	Message-oriented persistent communication
	Kostenmetriken für Multicast

	Fin
	Zusammenfassung
	Fin

	Anhang
	Verweise
	Literatur

