<2025-11-06 Do > Dr. Arne Babenhauserheide / draketo.de

Gehasste und geliebte Sprachen

In der Vorlesung wurde ich gestern nach Programmiersprachen gefragt: welche werden
gehasst und welche werden in Freier Software geliebt? Und wie gerechtfertigt ist das?
Knappe Kommentare, zugespitzt.

Spoiler: die Realitét ist weit differenzierter als verbreitete Vorurteile. Lasst euch nicht
durch eure Vorurteile blockieren. Auch nicht durch meine.

Etwas tberarbeitete Fassung der aus dem Armel geschiittelten Einschitzung in der Vor-
lesung. Immernoch aus dem Armel geschiittelt, aber mit ein paar Links.

Mehr Sprachen und Sichtweisen: TIOBE Index und StackOverflow Developer Survey.

Disclaimer: das hier ist meine Meinung. Andere sehen das anders. Vielleicht zurecht.
Ich habe das mal anders gesehen. Und werde es in Zukunft anders sehen. Niemand weifs
wirklich, was gut ist. Erganzungen gerne tiber Mastodon.

Inhaltsverzeichnis

1 Gehasste Sprachen 2
1.1 Fortran. e 2
1.2 COBOL 2
1.3 Java e 2
1.4 Javascript Lo 3
1.5 PHP . . 3
1.6 Prolog 3
1.7 Lisp/Scheme 3
1.8 XML und XSLT o 4
1.9 YAML e 4

2 Geliebte Sprachen 4
2.1 Rust e 4
2.2 GO . . 5
23 Lua. 5
24 C .o 5
25 CH+ o 5
2.6 Typescript)
2.7 Python 6
2.8 Lisp/Scheme 6

https://www.draketo.de
https://www.tiobe.com/tiobe-index/
https://survey.stackoverflow.co/2025/technology#worked-with-vs-want-to-work-with-language-worked-want-prof
https://www.draketo.de/software/language-empiric.html
https://www.draketo.de/software/language-empiric.html
https://rollenspiel.social/@ArneBab/115504985396124663

3 Gaéstebuch :-) 6
3.1 Anmsible. 6
3.2 Forth 6
3.3 JSON o 7
3.4 AWK . . . e 7

1 Gehasste Sprachen

1.1 Fortran

Alte Leute mussten alle damit arbeiten und hassen es. Im Studium fanden wir es alle
schrecklich und ich habe in der Doktorarbeit zwei Jahre gebraucht, um die Vorurteile zu
iiberwinden.

Es ist alt und hat einiges an Deklarationsoverhead, schreibt sich fiir Mathematik aber
sogar angenehmer als Python und ist fast 100x schneller. Ich habe einen kleinen Einstieg
geschrieben.

Fortran 90 ist allerdings auch eine viel elegantere Sprache als Fortran 77 (das Die Alten™
lernten).

Und Fortran-Code von vor 40 Jahren lauft heute noch.

Wenn eine Sprache nicht gehasst wird, war sie nie beliebt . ..

1.2 COBOL

Alte Leute in Finanzen und Verwaltung mussten damit arbeiten. Elon Musk findet, es
sollte iiber KI-Ubersetzung durch Java ersetzt werden.

Die proprietaren Compiler sind teuer und gnuCOBOL ist noch langsam, iiber die EU
wird aber Arbeit an freien COBOL-Werkzeugen unterstiitzt.

Ich erwarte ein Comeback.

1.3 Java

Lange Zeit die am weitesten verbreitete Programmiersprache, mit viel Overhead und
harter Abstraktion, gleichzeitig aber Reflection, die sie bricht. Es braucht eher mehr RAM,
floating Point Mathematik ist suboptimal und es ist fiir low-level Arbeit unpraktisch
(keine unsigned bytes ...).

Langatmig: Braucht viel Code fiir wenig Logik.

Es gibt Bibliotheken fiir alles. Oft schlecht dokumentierte Bibliotheken. Industriestan-
dard.

2/7

https://benchmarksgame-team.pages.debian.net/benchmarksgame/box-plot-summary-charts.html
https://www.draketo.de/software/learn-fortran.html
https://gnucobol.sourceforge.io/
https://nlnet.nl/project/COBOL-compiler/

Java ist in den letzten Jahren aber eleganter geworden (z.B. durch Lambdas und Records
und var) und die JVM ist flexibel und schnell.

1.4 Javascript

Fiir Jahrzehnte funktionierte nur Javascript fiir Web-Frontends ohne Neuladen. Die Spra-
che ist inkonsistent und gefahrlich und falsy und truthy und das scoping in geschachtelten
lambdas haben schon einige fiese Bugs produziert. Braucht durch Geschwindigkeitsopti-
mierungen (Beispiel: Multi-Tier-JIT) vergleichsweise viel Speicher.

Aber Javascript von vor 10 Jahren lauft heute noch.
Und es schafft gleichzeitig eine minimale Startverzégerung von Quellcode aus.

Dass Javascript schnell wurde (Node.js im Benchmarksgame) beweist, dass jede Sprache
bis auf Faktor 3 an C herankommen kann, wenn nur genug Geld und Fachkenntnis auf
die Optimierung geworfen wird.

1.5 PHP

Kann alle Paradigmen und fillt dir sicher auf die Fiike. Wurde viel von Leuten genutzt,
bevor sie richtig Programmieren konnten. War frither sehr langsam, aber Facebooks
Hack-Versuch hat bewiesen, dass auch PHP schnell sein kann und PHP 7+ ist schneller
als Python. Der einfachste Schritt von statischen zu dynamischen Seiten.

PHP war auf jedem Server verfiigbar, weil seine Sandbox den Betrieb dort einfach und
(fiir den Serverbetreiber) verlésslich machte.

PHP lauft immernoch hinter vielen groften Webseiten.

1.6 Prolog

Wird an Unis gelehrt, um Logikprogrammierung zu lernen.

Es war vor dem zweiten KI Winter 1987 die Europaische Antwort auf Lisp. Sega hat
damit 1986 einen KI-Computer verdffentlicht. MAME kann ihn seit 2024 emulieren.

1.7 Lisp/Scheme

Lots of Irritating Superfluous Parentheses. Nach dem KI-Winter wurde es durch andere
Sprachen verdringt, aufer ihr nutzt Emacs (wie ich). Seine Features tauchen immer
wieder auf.

Mehr dazu bei den geliebten Sprachen.

3/7

https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/box-plot-summary-charts.html
https://de.wikipedia.org/wiki/KI-Winter
https://de.wikipedia.org/wiki/Sega_AI_Computer
https://www.mamedev.org/

1.8 XML und XSLT

Komplex, schmerzhaft durch nur halb funktionierendes XSLT, das versucht zu liefern was
Lisp’s match kann, aber immer nur auf eine von fiinf dokumentierten Arten funktioinert.
Und XML zu Parsen braucht signifikant Rechenleistung.

Nimm Lisp und verzehnfache den Syntax-Overhead. Dann benutz es als Programmcode
fiir Remote Procedure Calls (RPC). Um ein ldngeres Hello World zu schreiben, braucht
ihr Shakespeare Lang.

Aber es gibt in allen Sprachen Parser dafiir, es kann mit Schemata validiert werden, und
es ist streng definitert.

1.9 YAML

Menschenlesbares XML trifft Pythonisiertes JSON mit mehr Fallstricken und weniger
Bibliotheken - und noch mehr Falschverwendung. Liest sich fast wie Markdown, aber
mit Einriickung.

Ich habe 2008 aufgehort es zu nutzen, weil unsortierte Hashmaps in einem menschenles-
baren Format blod sind: der Roundtrip Programm-zu-Programm funktionierte gut, aber
Serialisiert-zu-Serialisiert funktionierte nur mit zuséatzlichen Listen, weil Hashmaps ihre
Schliissel umsortieren konnen.

Zehn Jahre spéater kam es iiber Docker u.a. zurtick. Hashmaps sind jetzt in den meisten
Sprachen nach insert-Reihenfolge sortiert (mein Problem ist also gelost) und es ist
sicherer fiir Zahlen als JSON (auffer von Javascript aus, das castet Nummer-Strings
zu Zahlen ...), aber Leute haben angefangen, statt Makefiles Pseudo-Shell-Skripte als
YAML-Listen zu schreiben, die alle Fallstricke von Shell-Skripten mit Sonderregeln in
YAML kombinieren.

YAML kann viel und hat viele Sonderregeln fiir Menschenlesbarkeit, die bei Serialisierung
storen konnen.

Version 1.2 von 2009 16st viele der Probleme, aber das verwendet fast niemand.

Inzwischen gibt es in vielen Sprachen langsame, inkompatible Parser dafiir, aber ich lese
YAML gerne. Der Lynchmob ruft schon

2 Geliebte Sprachen

2.1 Rust

Von Mozilla gefordert, hat in Firefox grofe Fortschritte ermoglicht, wird von allen geliebt
und produziert 500 MiB grofse Projekte mit massiven Compilezeiten aus ein paar dutzend
Seiten Code.

4/7

https://de.wikipedia.org/wiki/Shakespeare_Programming_Language
https://yaml.org/
https://github.com/cblp/yaml-sucks

Wird fiir mich erst interessant, wenn mit GCCrs eine zweite Implementierung verfiighar
ist, deren Hardware-Support nicht durch das von Apple kontrollierte LLVM begrenzt ist

2.2 Go

Einfach aufzusetzen, baut kleine Binaries, einfache Parallelitét, einfach zu lernen durch
absichtliche Begrenzung, begrenzt durch absichtliche Begrenzung (Leute beschweren sich,
dass sie gegen Winde laufen).

2.3 Lua

Kann leicht als Skriptsprache in Spiele eingebunden werden, kann mit LuaJIT schnell
sein. Ich habe nie mehr als ein Hello World gebaut.

24 C

Elegant in der Néhe zur Hardware. Leicht fiir Leute mit viel Hintergrundwissen. Pointer
sind gefdhrlich. Doppelpointer sind doppelt gefahrlich.

Grofses Risiko von Speicherfehlern, durch Tooling aber teilweise erschlagen.

2.5 C++

Fiir Leute, die glauben, dass sie programmieren konnen. Wahnsinnige Komplexitat mit
mehr Fufangeln als Javascript, aber fiir maximale Leistung von komplexen Systemen
niitzlich.

Fiigt Klassen zu C hinzu. Und ein Turing-Vollsténdiges Template-System, mit dem
Laufzeiteinsparungen durch Compilezeitkosten erkauft werden konnen.

Smart Pointer sind sicherer als Pointer, miissen dafiir aber genutzt werden.

Nicht ganz so grofses Risiko von Speicherfehlern wie C, durch Tooling teilweise erschlagen.

2.6 Typescript

Typen in Javascript: Die Fufangeln von Javascript gepaart mit der Langatmigkeit von
Java, aber etwas leichteres Refaktorieren durch Typ-Priifungen. Deren Korrektheit aber
nicht fiir Laufzeit gilt = es ist ein teurer Linter mit viel Overhead, findet aber echte
Fehler.

Lost keine Kommunikationsprobleme. Kontrolliert von Microsoft.

5/7

https://rust-gcc.github.io/

2.7 Python

Leicht zu lernen, Sehr gute Dokumentation, sehr nette Community, langsam, braucht in
grofsen Projekten viele Hacks fiir gute Startzeit.

Friiher: ,schreib nur Performance-Kritisches in C“. Heute: ,Schreib ein Python-Frontend
fiir ein riesiges C+-+-KI-Modell“. Frither genau eine verstandliche Syntax. Heute stehlen
comprehensions den eingeriickten for-loops die Show.

Es gibt Bibliotheken fiir alles. Gut dokumentierte. Darunter scipy und matplotlib.

Unter der Haube von scipy lauft viel Fortran. Teils sehr, sehr alt. Und schnell.

2.8 Lisp/Scheme

Lots of Irritating Superfluous Parentheses. Nach dem KI-Winter wurde es durch andere
Sprachen verdréangt, aber seine Features tauchen immer wieder auf.

(ja, Lisp wird geliebt und gehasst)

Fiir die Leute, die die Grenzen von Softwareentwicklung austesten und ihr Hobby sicher
nicht im Job verwenden wollen.

(vielleicht &ndert sich das noch)
Es gibt ein Scheme fiir jede Doméne — von Embedded Device bis Webservice.

Um der Lisp Curse zu entgehen, beachtet den Lisp Curse Redemption Ark und den
Zen for Scheme. Um die Klammern zu verringern, nutzt Wisp (Scheme) oder Whisper
(Common Lisp). Dann gibt es noch weniger Sprachkundige.

Ich verwende in meinen Hobby-Projekten Guile Scheme (= py2quile und Programming
FEssentials with Scheme und with Wisp). Das hier ist also mit Vorsicht zu genieflen.

3 Gastebuch :-)

Hdndisches Gistebuch: schreib einfach tiber Mastodon, dann fiige ich es ein.

3.1 Ansible
Siehe YAML

3.2 Forth

Mix aus interpretierter und kompilierter Sprache mit einer extrem kleinen und schnellen
Laufzeitumgebung.

6/7

https://wingolog.org/archives/2013/01/07/an-opinionated-guide-to-scheme-implementations
https://www.winestockwebdesign.com/Essays/Lisp_Curse.html
https://applied-langua.ge/posts/lisp-curse-redemption-arc.html
https://www.draketo.de/software/zen-for-scheme.html
https://www.draketo.de/software/wisp.html
https://git.sr.ht/~dieggsy/whisper
https://www.gnu.org/s/guile
https://www.draketo.de/py2guile
https://www.draketo.de/software/programming-scheme.html
https://www.draketo.de/software/programming-basics-wisp.html
https://rollenspiel.social/@ArneBab/115504985396124663

Auf PalmOS die Sprache, um Apps on-device zu entwickeln (das ging).

1982 kam der Jupiter Ace mit Forth im ROM heraus, wihrend alle anderen Heimcom-
puter noch BASIC im ROM hatten. Deshalb wurde er kein Erfolg, aber ein spannendes

Experiment.
— deBaer

3.3 JSON

Javascript Object Notation. Hat keine Kommentare, deswegen ist es anders als m3u-
Listen kompatibel geblieben. Und deswegen gibt es X ,JSON mit Kommentaren*-
Projekte.

Und JSON will bite us badly.

Danke fiir den Hinweis an knoppi!

3.4 AWK

AWK is kind of perfect for what it does (data-driven stuff and combining it with other
specialized command line tools) and it doesn’t pretend to be the one language for
everything.

— eruwero

/7

https://www.draketo.de/english/json-will-bite

	Gehasste Sprachen
	Fortran
	COBOL
	Java
	Javascript
	PHP
	Prolog
	Lisp/Scheme
	XML und XSLT
	YAML

	Geliebte Sprachen
	Rust
	Go
	Lua
	C
	C++
	Typescript
	Python
	Lisp/Scheme

	Gästebuch :-)
	Ansible
	Forth
	JSON
	AWK

